第五章 测试题


2.
\[
\begin{aligned}
\int_0^{2 \pi} | \sin x-\cos x | dx = \int_0^{\pi/4} (\cos x -\sin x) dx + \int_{\pi/4}^{5\pi/4} (\sin x -\cos x) dx +\int_{5\pi/4}^{2\pi }(\cos x -\sin x) dx
\\= (\sin x +\cos x) \bigg|_0^{\pi/4} - (\cos x +\sin x)\bigg|_{\pi/4}^{5\pi/4} + (\sin x +\cos x) \bigg|_{5\pi/4}^{2\pi }
=4\sqrt 2.
\end{aligned}
\]

3.
\[
\begin{aligned}
\mbox{原式}= \arctan \sqrt{\sqrt x -1} \cdot x \bigg|_1^{16}- \int_1^{16} \frac{ 1 }{ 4\sqrt{\sqrt x-1} } dx \qquad (\mbox{let } t= \sqrt{\sqrt x-1})
\\= 4\pi - \int_0^{\sqrt 3} (t^2+1) dt= \frac{16 \pi}{3} - (\frac13 t^3 +t )\bigg|_{0}^{\sqrt 3} = \frac{16 \pi}{3}-2\sqrt 3.
\end{aligned}
\]

 

4. 首先知道 $r=2\cos \theta$ 是圆心在 $(1,0)$ 半径为 1 的, 心形线是缺口在原点,尖点朝左的,如图.


容易计算两条曲线的交点是
\[
r=1, \theta =\frac \pi 3, \qquad r=1, \theta=\frac{5 \pi}{3}.
\]
则在圆内部而在心形线外部的部分关于实轴对称,而上面的部分可以通过圆的方程 $\theta$ 从 $0$ 变化到 $\frac \pi 3$ 对应的扇形,再减去心形线的方程 $\theta$ 从 $0$ 变化到 $\frac \pi 3$ 对应的扇形而得。由极坐标的面积公式得到
\[
S=2\left( \int_0^{\pi /3} \frac12 (2\cos \theta)^2 d\theta - \int_0^{\pi/3} \frac12 [2(1-\cos \theta )]^2 d\theta \right)
=4(\sqrt 3 -\frac \pi 3)
\]

 

 


5. 首先确定切点,假设切点为 $(x_0,y_0)$, 则经过切点以及 $(2a,0)$ 的直线可设为
\[
y= y'(x_0) (x-2a),
\]
特别的有
\[
y_0 = y'(x_0) (x_0 -2 a).
\]
另外,对椭圆的原方程考虑隐函数的在 $x=x_0$ 处的导数得到
\[
\frac{2x_0}{a^2} + \frac{2 y_0 y'(x_0)}{b^2}=0.
\tag{*}
\]
联解上两式消掉 $y'(x_0)$ 得
\[
\frac{2x_0 (x_0 -2a) }{a^2} + \frac{2 y_0^2 }{b^2}=0,
\]
再利用
\[
\frac{x_0^2}{a^2} + \frac{y_0^2 }{b^2}=1
\]
推出
\[
x_0= \frac12 a, \qquad y_0 =\pm \frac {\sqrt 3} 2 b,
\]
再利用 $(*)$ 可得到切线分别为
\[
bx +\sqrt 3 ay =2ab, \qquad bx-\sqrt 3 ay =2ab.
\]
接下来计算旋转体的体积,注意到它关于 $x$ 轴对称,所以只需要算上半平面然后乘以 2. 这里用 $y$ 为积分变量,原因是体积元素的定义是唯一的,以 $x$ 为积分变量需要分开两个区间来算。
\[
dV =[ \pi (2a -\frac{\sqrt 3 a}{b} y)^2 -\pi a^2 (1- \frac{y^2}{b^2})]dy,
\]

\[
V= 2 \int_{0}^{\frac{\sqrt 3}{2} b } \pi [ (2a -\frac{\sqrt 3 a}{b} y)^2 - a^2 (1- \frac{y^2}{b^2})]dy=\sqrt 3 \pi a^2 b.
\]

 

6. 根据积分中值定理有
\[
f(1)= 2\int_0^{\frac 12} x f(x) dx = 2 \xi_1 f(\xi_1) ( \frac12 -0 )= \xi_1 f(\xi_1),
\]
其中 $\xi_1 \in (0,1/2)$. 设函数
\[
\phi(x) = xf(x).
\]
容易看到
\[
\phi(1) = f(1)= \xi_1 f(\xi_1) = \phi(\xi_1),
\]
根据拉格朗日中值定理,存在 $\xi\in (\xi_1,1)$ 使得
\[
f(\xi)+\xi f'(\xi)=\phi'(\xi) = \frac{\phi(1) -\phi(\xi_1)}{1-\xi_1}=0.
\]


7. 定义函数
\[
\varphi(x) = \int_0^x f(t) dt - x\int_0^1 f(t)dt,
\]
注意到
\[
\varphi(0) =\varphi(1) =0.
\]

\[
\varphi'(x) =f(x) -\int_0^1 f(t) dt,
\]
根据积分中值定理得, 存在 $\xi\in(0,1)$ 使得
\[
\varphi'(x) =f(x) -\int_0^1 f(t) dt= f(x)-f(\xi).
\]
若 $x\in ( \xi ,1 )$, 则根据函数不增,有 $f(x)\leq f(\xi)$, 即 $\varphi'(x) \leq 0$, 因此 $\varphi(x)$ 再 $(x,1)$ 上单调递减,即
\[
\varphi(x)\geq \varphi(1)=0
\]
即证结论。同理可证若 $x\in ( 0, \xi )$.


( 也可以研究函数
\[
\phi(x) = \frac 1x \int_0^x f(t)dt,
\]
去证明
\[
\phi(a) \geq \phi(1).
\]
还是求导数,然后利用积分中值定理。
)

 

转载于:https://www.cnblogs.com/mmmmmm6m/p/4192692.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值