时间复杂度的概念以及计算

老规矩, 先看看维基定义:

The time complexity of an algorithm quantifies the amout of time taken by an algorithm to run as function. The complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms.

算法的时间复杂度量化了函数运行算法所花费的时间,排除了系数以及低阶项,算法 通常用大写的 O 表示。

T(n) =  O(f(n))  (f(n) 一般是算法中频度最大的语句频度)

 

 

算法一(线性级别):

1 int x = 1;         // 计算 1 次
2 for (in i = 0; i < n; i++) 3 { 4 x += 1; // 计算 n 次 5 }

 算法共计算 n + 1 次, n 无限大, 则 n ≈ n + 1(排除低阶项), 则此算法的时间复杂度为 T(n) =  O(f(n)) = O(n).

 

算法二 (平方级别):

1 for (int i = 0; i < N; i++)
2 { 3 for (int j = i + 1; j < N; j++) 4  { 5 x += j // 执行 n + (n - 1) + (n - 2) + ...... + 1 次 6  } 7 }

  算法执行 n(n + 1)/2 次, 排除系数以及低阶项, 算法复杂度T(n) =  O(n2).

 

算法三 (指数级别) :

 1 // 二分查找, x[n] 为递增数组, 求数组中值等于 p 的下标。 
 2 left = 0; 3 right = n - 1; 4 while (left <= right) 5 { 6 mid = (left + right)/2; 7 8 case: 9 x[mid] < t : left = mid + 1; 10 x[mid] = t : p = mid; break; 11 x[mid] > t : right = mid - 1;

 

 

共同 n 个元素, 二分执行,剩余元素依次为 n/21, n/22/, n/23,  n/2k ,其中 k 为程序执行次数。

令   n/2= 1, 则 n = 2k,  k = logn, 复杂度 O = (logn).

 

转载于:https://www.cnblogs.com/yaolin1228/p/7586233.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值