题解【[BJOI2012]算不出的等式】

题目背景emmm

\[\text{首先特判掉p=q时的情况(ans = }p^2-1\text{)}\]

\[\text{构造函数}f(k) = \left\lfloor \frac{kq}{p}\right\rfloor\]

\[\text{考虑这个函数}g(x)=\left\lfloor x \right\rfloor\text{的几何意义}\]

\[\text{他表示在平面直角坐标系中,横坐标为定值,纵坐标小于等于x的整点个数}\]

\[\text{好,那么我们继续来看f(k),他表示所有横坐标为定值,纵坐标小于等于}\frac{kp}{q}\text{的数的个数}\]

\[\text{那么构造}t(k)=\frac{kq}{p}\text{,那么}\sum_{i=1}^{\frac{p-1}{2}}f(k)\text{的几何意义是:}\]

\[\text{所有横坐标}\in(1,\frac{p-1}{2})\;\text{的整数,纵坐标是整数的点数}\]

1505765-20190216211059000-1186433231.png

中蓝线以下部分中整点数
~

\[\text{又因为}\left\lfloor t(k) \right\rfloor_{max} = \frac{q-1}{2}\]

\[\text{所有只用考虑纵坐标在直线}\{(0,0),(\frac{p-1}{2},\frac{q-1}{2})\}\text{以下的整点}\]

\[\text{然后p,q互换同理}\]

\[\text{所以就是长方形ABCD}(A(0,0),B(0,\frac{p-1}{2}),C(\frac{q-1}{2},\frac{p-1}{2}),D(\frac{q-1}{2},0)\text{中整点个数}\]

\[\text{所以答案就是}\frac{(p-1)\times(q-1)}{4}\]

然后你就切了这道蓝题~

转载于:https://www.cnblogs.com/tyqtyq/p/10389200.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值