BZOJ2303 APIO2011方格染色(并查集)

  比较难想到的是将题目中的要求看做异或。那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1。瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)&1。也就是说,确定第一行和第一列的颜色,就可以确定整个矩阵。现在如果没有已填的格子的限制,答案就是2n+m-1

  然后考虑已填格子。假设固定了a1,1,那么其影响到的就是a1,j和ai,1。即要求两者相同或不同。于是可以把每个格子的染色情况拆成两个点,根据已填格子将其连边,同一连通块内的点只要选择一个就必须全部选择。那么方案数就是2连通块个数/2。注意特判第一行或第一列格子已填的情况。

  细节比较麻烦,写完也不知道自己在干啥。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
#define P 1000000000
#define N 100010
int n,m,k,fa[N<<2],color[N<<2];
struct data{int x,y,c;
}a[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int solve(int c)
{
    memset(color,0,sizeof(color));
    for (int i=1;i<=(n+m-2<<1);i++) fa[i]=i;
    for (int i=1;i<=k;i++)
    if (a[i].x!=1&&a[i].y!=1)
    if ((a[i].c==c)^(((a[i].x-1)&1)*(a[i].y-1)&1)) fa[find((a[i].x-1<<1)-1)]=find((n+a[i].y-2<<1)-1),fa[find(a[i].x-1<<1)]=find(n+a[i].y-2<<1);
    else fa[find((a[i].x-1<<1)-1)]=find(n+a[i].y-2<<1),fa[find(a[i].x-1<<1)]=find((n+a[i].y-2<<1)-1);
    int cnt=0;
    for (int i=1;i<=n+m-2;i++) if (find((i<<1)-1)==find(i<<1)) return 0;
    for (int i=1;i<=k;i++)
    {
        if (a[i].x==1&&a[i].y==1){if (a[i].c!=c) return 0;}
        else
        {
            if (a[i].y==1)
            {
                if (color[find((a[i].x-1<<1)-a[i].c)]!=-1) color[find((a[i].x-1<<1)-a[i].c)]=1;else return 0;
                if (color[find((a[i].x-1<<1)-(a[i].c^1))]!=1) color[find((a[i].x-1<<1)-(a[i].c^1))]=-1;else return 0;
            }
            if (a[i].x==1)
            {
                if (color[find((n+a[i].y-2<<1)-a[i].c)]!=-1) color[find((n+a[i].y-2<<1)-a[i].c)]=1;else return 0;
                if (color[find((n+a[i].y-2<<1)-(a[i].c^1))]!=1) color[find((n+a[i].y-2<<1)-(a[i].c^1))]=-1;else return 0;
            }
        }
    }
    for (int i=1;i<=(n+m-2<<1);i++)
    if (find(i)==i&&!color[i]) cnt++;
    cnt>>=1;
    int ans=1;while (cnt--) ans=(ans<<1)%P;
    return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj2303.in","r",stdin);
    freopen("bzoj2303.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read(),k=read();
    for (int i=1;i<=k;i++) a[i].x=read(),a[i].y=read(),a[i].c=read();
    cout<<(solve(0)+solve(1))%P;
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9560839.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值