【bzoj4897】[Thu Summer Camp2016]成绩单 区间dp

题目描述

给你一个数列,每次你可以选择连续的一段,付出 $a+b\times 极差^2$ 的代价将其删去,剩余部分拼到一起成为新的数列继续进行此操作。求将原序列全部删去需要的最小总代价是多少。

输入

第一行包含一个正整数n,表示成绩单的数量。
第二行包含两个非负整数a,b,表示给定的评估参数。
第三行包含n个正整数w_i,表示第i张成绩单上的分数。

输出

仅一个正整数,表示最小的代价是多少。

样例输入

10
3 1
7 10 9 10 6 7 10 7 1 2

样例输出

15


题解

区间dp

对于这种删除连续一段,剩下的拼到一起的问题:把操作对应到原序列上,相当于一些要么包含要么相离的操作。

相离的情况显然是区间dp,设 $f[l][r]$ 表示将原序列的 $[l,r]$ 全部删掉所需的最小总代价。

对于包含的情况,也可以使用区间dp来解决。具体方法是:同时维护转移到一半时的状态。如下图(先删b~c再删a~d):

记录从a转移到b的状态,dp得知bc可以用某代价消掉,进而推知a转移到c的状态,继续转移到d即可。

由于极差之和最大值与最小值有关,因此离散化后设 $g[l][r][i][j]$ 表示将 $[l,r]$ 删至剩下的数最小值为 $i$ ,最大值为 $j$ 的最小代价。

那么每次dp区间 $[l,r]$ ,最后一个位置 $r$ 的转移有两种情况:

  1. 和前面的 $[l,r-1]$ 放到一起删除,这样的话 $r$ 会影响最小值与最大值,相应的有 $g[l][r][\text{min}(i,w[r])][\text{max}(i,w[r])]=g[l][r-1][i][j]$ ;
  2. 和后面的某一段 $[k+1,r]$ 作为被包含的子区间删除,这样的话枚举 $k$ ,有 $g[l][r][i][j]=g[l][k][i][j]+f[k+1][r]$ 。

处理完这个区间的 $g[l][r][][]$ 后处理 $f[l][r]$ ,显然依题意有 $f[l][r]=g[l][r][i][j]+a+b\times(j-i)^2$ 。

最后的答案就是 $f[1][n]$ 。

时间复杂度 $O(n^5)$ ,常数极小可以通过。

注意边界问题什么的。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int w[52] , v[52] , f[52][52] , g[52][52][52][52];
inline void gmin(int &x , int y)
{
	x > y ? x = y : 0;
}
int main()
{
	int n , a , b , len , i , j , k , l , r;
	scanf("%d%d%d" , &n , &a , &b);
	for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , v[i] = w[i];
	sort(v + 1 , v + n + 1);
	memset(f , 0x3f , sizeof(f)) , memset(g , 0x3f , sizeof(g));
	for(i = 1 ; i <= n ; i ++ ) w[i] = lower_bound(v + 1 , v + n + 1 , w[i]) - v , g[i][i][w[i]][w[i]] = 0 , f[i][i] = a;
	for(len = 2 ; len <= n ; len ++ )
	{
		for(l = 1 ; l <= n - len + 1 ; l ++ )
		{
			r = l + len - 1 , g[l][r][w[r]][w[r]] = f[l][r - 1];
			for(i = 1 ; i <= n ; i ++ )
				for(j = i ; j <= n ; j ++ )
					gmin(g[l][r][min(i , w[r])][max(j , w[r])] , g[l][r - 1][i][j]);
			for(k = l ; k < r ; k ++ )
				for(i = 1 ; i <= n ; i ++ )
					for(j = i ; j <= n ; j ++ )
						gmin(g[l][r][i][j] , g[l][k][i][j] + f[k + 1][r]);
			for(i = 1 ; i <= n ; i ++ )
				for(j = i ; j <= n ; j ++ )
					gmin(f[l][r] , g[l][r][i][j] + a + b * (v[j] - v[i]) * (v[j] - v[i]));
		}
	}
	printf("%d\n" , f[1][n]);
	return 0;
}

 

转载于:https://www.cnblogs.com/GXZlegend/p/8516647.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值