【学习笔记:计算几何基础3】 Convex Hull

Ahead

10.6.2018

算法5(GS)

最优算法O(nlogn)

实现

1.预处理排序
选取LTL与第二LTL 对剩下的点进行极角排序 (ToLeft Text)
1502976-20181006104754668-459309715.png
2.开两个栈T与S (开头相对!!! ,为了好看)将已连接的边放入S,其余的按极角大小放入T
1502976-20181006104851129-886818400.png
3.三个指针指向S的栈顶与次栈顶以及T的栈顶S[0],S[1],T[0]

代码

   while(!T.empty()) 
    {
        ToLeft(S[1],S[0],T[0])?S.push(T.pop()):S.pop(); 
    }    

4.最后对S栈自底向上是凸包的环路描述
1502976-20181006105855334-729493509.png
这是大概的流程图

理解

每次退S栈表示一次回溯,否则是一次加边,那么对于弹S 表示S栈顶的元素偏内,而新节点更外面,就目前而言应该往右拐 (模拟一下就可以看出了)
1502976-20181006110836551-1924918948.png

正确性

1502976-20181006113523044-947925772.png
下一个拓展点一定位于黄区或者蓝区,如果黄区直接拓展,如果蓝区,那么显然就是一个退栈的过程 也就是把在右边的退了,从而达到我们需要的状态 (弹一个判断一个)

复杂度分析

对于每次操作必然带着一次栈操作,那么一个点最多经历一次退栈一次入栈一次出栈,所以是O(n)的操作时间 加上预处理所以为O(nlogn) 。

Presorting?

一个很显然的方法就是去求夹角,不过还是会有误差。
和之前的算法一样我们尝试使用ToLeft 也就是把比较器变成ToLeft,越左边,越后面

简化

如果输入的数据已经在X或Y或某一方向上有序,那么,就能看成垂直该方向的两个无穷远处构造凸包,分别构造出上凸包(upper hull)和下凸包(lower hull) 从而可以将时间优化至O(n);
当然关于闭包的算法还有很多,不过GS算法已经足够优秀了

转载于:https://www.cnblogs.com/PiCaHor/p/9746986.html

相关资源:Leslie人口预测模型
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页