T51071 Tony到死都想不出の数学题
自己摘的题出了数据挂一下链接
\(a, b\) 均为整数
设 \(M(a)\) 为满足 \((a + b) | ab\) 的 \(b\) 的个数, 求 \(M(a)\)
\(a <= 10^{9}\)
Solution
设有 \(n(a + b) = ab\)
则有 \(an + bn - ab = 0\)
两边加上 \(a^{2}\) 得 \(an +bn - ab + a^{2} = a^{2}\)
因式分解得 \((a - n)(a + b) = a^{2}\)
观察此式, 发现 \(0 < (a - n), (a +b) \in Z\)
故每对 \(n^{2}\) 的因子对应唯一一个 \(b\)
故答案为 \(a^{2}\) 的因数个数 - 1(减掉完全平方那个, 对应的 \(b\) 为 \(0\))除以2, 即:\[\frac{d_{0}(a^{2}) - 1}{2}\]
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#include<cmath>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
int a;
int get_numd(int x){
int num = 0;
REP(i, 1, x)
if(x % i == 0)num++;
return (num - 1);
}
int main(){
a = RD();
printf("%d\n", get_numd(a));
return 0;
}