英特尔公司将停止910GL、915GL和915PL芯片组的生产

英特尔宣布将淘汰910GL、915GL和915PL三种低端芯片组,以推动更高端产品的销售。这一举措预计将导致低端PC出货延迟,并表明英特尔正准备采用下一代支持多核处理器和新接口标准的芯片组。
       为了有利于销售更高端和基于迅驰技术的产品,英特尔公司将淘汰台式电脑的三种低端芯片组。

  淘汰计划将在本月底实施,这将在数月内使不同生产商推迟低端PC的出货。

  最近芯片巨头的消息证实,英特尔公司将停止910GL、915GL和915PL芯片组的生产。 这三种微型控制器的功能是伺服奔腾4和赛扬D中央处理器,预计这些芯片组将占今年下半年英特尔台式机芯片组供应量的20%。

       英特尔转向更高端性能芯片组一事可能表明,英特尔公司准备采用下一代芯片组,它们支持多内核处理器、新前端总线结构、新外设接口和一些日益增长的需要,比如安全管理和运行多重操作系统。

背景:此前,为了推行775接口的CPU,Intel力推915芯片组,无奈DDRII内存价格居高不下,导致915一直打不过865。

后来Intel推出使用DDR的915PL/GL等芯片组,深受用户喜爱。而主板厂商也推出各种改进版的主板。比如可使用DDR和

AGP的915PL,甚至华擎的主板可同时使用AGP&PCI-E的显卡。

转载于:https://www.cnblogs.com/garlandz/archive/2005/08/04/207127.html

项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 本项目采用了深度学习技术,如卷积神经网络(CNN),用于图像特征提取;同时结合了图像处理库OpenCV,用于图像数据的预处理后处理。系统实现了基于图像特征的相似图像检索、图像分类、目标检测等功能。通过提取图像的特征向量,不仅可以实现精准的图像搜索分类,还能帮助用户快速准确地识别图像中的目标物体,具有较高的准确率效率。通过本项目的设计与实现,可以有效解决在大数据环境下处理海量图像数据时面临的特征提取、图像分析应用问题,为图像信息的挖掘与利用提供了新的途径解决方案,具有广泛的应用前景推广价值。 (1)特征提取模块:使用局部特征描述符(如SIFT、SURF)或深度学习特征提取方法,对海量图像中的特征进行抽取表示,以便后续的相似度计算。 (2)相似图像搜索模块:用户上传查询图像或输入描述后,系统利用特征提取的结果进行相似图像检索,找出与查询图像最相似的图像,并返回给用户。 (3)标签搜索模块:系统对图像进行自动标签或标注,用户可以根据这些标签进行图像搜索,方便快速地找到感兴趣的内容。 (4)检索结果排序模块:根据图像的相关度或其他指标,系统对检索结果进行排序,确保用户看到最相关的图像在前面展示。 (5)图像分类模块:系统通过训练模型对图像进行分类,将其归入不同的类别,为用户提供更精细的检索浏览功能。 (6)图像清晰度评估模块:系统可以评估图像的清晰度,排除模糊或质量较低的图像,提高搜索结果的质量准确性。 (7)图像信息提取模块:系统可以提取图像中的关键信息,如物体、人脸等,为用户提供更多的图像认知分析功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值