CF583Div1+Div2

\(A\)&\(B\)

\(C\)

题意:\(t1t2\)接起来可以,没说\(t1t2t3\)接起来不可以!!!

\(D\)

可以得到,答案一定是0,1,2三个数当中的一个。先判断0行不行,直接广搜,然后判断1行不行,如果行的话就输出,否则输出2。
关键在于如何判断1是否可行:
对于每一个障碍,处理出它是否和左下联通,是否和右上联通,联通的意思是能否通过只走障碍(周围8个方向都可以走)到达左下或右上。因为执行这一步的条件是0不可行,说明没有障碍能既联通左下又联通右上(存在这样的点的话答案是0)。所以每个障碍点要么与左下联通,要么与右上联通,要么都不联通。
对于一个本来不是障碍的点,如果说把这个点变成障碍后满足无法从左上走到右下,那么满足的条件是这个点变成障碍后即和左下联通又和右上联通。
\(D\)题还需要一篇博客加深理解。。。

转载于:https://www.cnblogs.com/karryW/p/11461611.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值