转自:http://www.opencvchina.com/forum.php?mod=viewthread&tid=1124
原理:在特殊领域运算形式——结构元素(Sturcture Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结构是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑运算性质。
结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小还很多。二维平面结构元素由一个数值为0或1的矩阵组成。结构元素的原点指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的邻域像素在进行膨胀或腐蚀操作时是否需要参与计算。
先来定义一些基本符号和关系。
1. 元素
设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。
2. B包含于X
设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B
X,如图6.2所示。
3. B击中X
设有两幅图象B,X。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。
4. B不击中X
设有两幅图象B,X。若不存在任何一个点,它即是B的元素,又是X的元素,即B和X的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。
图6.1 元素
|
图6.2 包含
|
图6.3 击中
|
图6.4 不击中
|
5. 补集
设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作Xc,如图6.5所示。显然,如果B∩X=Ф,则B在X的补集内,即B
Xc。
图6.5 补集的示意图
6. 结构元素
设有两幅图象B,X。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。
7. 对称集
设有一幅图象B,将B中所有元素的坐标取反,即令(x,y)变成(-x,-y),所有这些点构成的新的集合称为B的对称集,记作Bv,如图6.6所示。
8. 平移
设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(x,y)变成(x+x0,y+y0),所有这些点构成的新的集合称为B的平移,记作Ba,如图6.7所示。
图6.6 对称集的示意图
|
图6.7 平移的示意图
|
好了,介绍了这么多基本符号和关系,现在让我们应用这些符号和关系,看一下形态学的基本运算。
6.1 腐蚀
把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba
X}=X
B,如图6.8所示。
图6.8 腐蚀的示意图
图6.8中X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。
值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被 Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被 Bv腐蚀的结果不同。
图6.9 结构元素非对称时,腐蚀的结果不同
图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。
在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。
图6.10 腐蚀运算
图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。
图6.11 原图
图6.12 腐蚀后的结果图
下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行腐蚀运算,即结构元素B为
;否则在垂直方向上进行腐蚀运算,即结构元素B为
。
腐蚀源码
1 BOOL Erosion(HWND hWnd,BOOL Hori) 2 { 3 DWORD OffBits,BufSize; 4 LPBITMAPINFOHEADER lpImgData; 5 LPSTR lpPtr; 6 HLOCAL hTempImgData; 7 LPBITMAPINFOHEADER lpTempImgData; 8 LPSTR lpTempPtr; 9

本文介绍了图像处理中的膨胀、腐蚀操作,这些操作基于结构元素进行二值图像的逻辑运算。腐蚀运算与膨胀运算互为对偶,可用于图像轮廓的改变。此外,还提及了细化技术的相关源码。






最低0.47元/天 解锁文章
1919

被折叠的 条评论
为什么被折叠?



