题目描述
一个整数,只知道前几位,不知道末二位,被另一个整数除尽了,那么该数的末二位该是什么呢
输入
输入数据有若干组,每组数据包含二个整数a,b(0<a<10000, 10<b<100),若遇到0 0则处理结束
输出
对应每组数据,将满足条件的所有尾数在一行内输出,格式见样本输出。同组数据的输出,其每个尾数之间空一格,行末没有空格。
样例输入
200 40 1992 95 0 0
样例输出
00 40 80 15
这个问题也是来源于HDU的,本身问题并不复杂。已知m的前几位,最后两位不知道,而这个数被n整除,可以用遍历所有可能的两位数的办法,逐个判断能否被整除,如果符合条件则输出。
我的C++实现如下:
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 int main() 5 { 6 vector<int> result; 7 int m, n; 8 for (;;) 9 { 10 result.clear(); 11 cin >> m; 12 cin >> n; 13 if (m == 0 && n == 0) 14 break; 15 for (int i = 0; i < 100; i++) 16 if ((i + m * 100) % n == 0) 17 result.push_back(i); 18 //control output format 19 for (int i = 0; i < result.size(); i++) 20 { 21 if (result[i] < 10) 22 cout << '0' << result[i]; 23 else 24 cout << result[i]; 25 if (i == result.size() - 1) 26 cout << endl; 27 else 28 cout << ' '; 29 } 30 } 31 return 0; 32 }
其实这是一个整除问题,我们设要求的数为x(0 ≤ x < 100),由题意可得n | (m * 100 + x) ,所以存在整数k,使得100m + x = kn。
整理得x = kn - 100m。根据整数除法的定义,100m = n * 100m div n + 100m mod n,其中 100m div n 是整数。
因此存在整数k′ = k - 100m div n,有x = k′n - 100m mod n,根据x∈[0,100)可以解出所有可能的x的值(穷举所有可能的k′)。基于上述思路的C++实现如下:
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 int main() 5 { 6 vector<int> result; 7 int m, n; 8 int tmp; 9 int k; 10 for (;;) 11 { 12 result.clear(); 13 cin >> m; 14 cin >> n; 15 if (m == 0 && n == 0) 16 break; 17 for (k = 0;; k++) 18 { 19 tmp = k * n - ((m * 100) % n); 20 if (tmp >= 0 && tmp < 100) 21 result.push_back(tmp); 22 if (tmp >= 100) 23 break; 24 } 25 26 //control output format 27 for (int i = 0; i < result.size(); i++) 28 { 29 if (result[i] < 10) 30 cout << '0' << result[i]; 31 else 32 cout << result[i]; 33 if (i == result.size() - 1) 34 cout << endl; 35 else 36 cout << ' '; 37 } 38 } 39 return 0; 40 }
ps.这个题的格式输出需要注意。