P3350 [ZJOI2016]旅行者

本文介绍了一种解决旅行者问题的有效算法。通过采用分治策略并利用最短路径算法,可以高效地找到两点间的最短路径。适用于网格状城市布局中寻找最优路线的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

小Y来到了一个新的城市旅行。她发现了这个城市的布局是网格状的,也就是有n条从东到西的道路和m条从南到北的道路,这些道路两两相交形成n*m个路口 (i,j)(1<=i<=n,1<=j<=m)。

她发现不同的道路路况不同,所以通过不同的路口需要不同的时间。通过调查发现,从路口(i,j)到路口(i,j+1)需要时间 r(i,j),从路口(i,j)到路口(i+1,j)需要时间c(i,j)。注意这里的道路是双向的。小Y有q个询问,她想知道从路口(x1,y1)到路口(x2,y2)最少需要花多少时间。

输入输出格式

输入格式:

 

第一行包含 2 个正整数n,m,表示城市的大小。接下来n行,每行包含m?1个整数,第i行第j个正整数表示从一个路口到另一个路口的时间r(i,j)。接下来n?1行,每行包含m个整数,第i行第j个正整数表示从一个路口到另一个路口的时间c(i,j)。接下来一行,包含1个正整数q,表示小Y的询问个数。接下来q行,每行包含4个正整数 x1,y1,x2,y2,表示两个路口的位置。

 

输出格式:

 

输出共q行,每行包含一个整数表示从一个路口到另一个路口最少需要花的时间。

 

输入输出样例

输入样例#1:  复制
2 2
2
3
6 4
2
1 1 2 2
1 2 2 1
输出样例#1:  复制
6
7

说明

题解:JudgeOnline/upload/201603/4456 sol.txt

 

 

// luogu-judger-enable-o2
//Pro:4456: [Zjoi2016]旅行者

//luogu开O2才能跑过.....

//将询问离线
//对于rx-lx>ry-ly的矩形,我们对x分治,否则对y分治
//我们取矩形的中间线将矩形分成两部分,那么一个询问的两个点有可能分别在线的两侧,也可能在线的同侧
//如果在线的两侧,那么它们之间的路径肯定会经过线上的一个点
//所以我们对线上的每一个点跑最短路,更新当前矩形内所有询问的ans,这样两点在线的两侧的询问就处理完了 
//对于两点在线的同侧的询问,它们的最短路可能过线,也可能不过线
//过线的情况在处理两点在线的两侧的时候已经更新过了,不过线的情况继续分治下去就可以了 

//这样做的原因是一个询问的两个点一定会在某条线的两侧 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

inline int read()
{
    char c=getchar();int num=0;
    for(;!isdigit(c);c=getchar());
    for(;isdigit(c);c=getchar())
        num=num*10+c-'0';
    return num;
}

const int N=2e4+5;
const int M=1e5+5;
const int INF=0x3fffffff;

#define poi(x,y) (x-1)*m+y

int n,m,Q;
int dis[N],dist[N][4],ans[M];

struct Query
{
    int x,y,xx,yy,id;
}q[M],q1[M],q2[M];

struct Node
{
    int dis,x,y;
    Node(int a,int b,int c)
    {
        x=a,y=b,dis=c;
    }
    bool operator < (const Node &a) const
    {
        return dis>a.dis;
    }
};

int cx[4]={-1,0,1,0},cy[4]={0,1,0,-1};
priority_queue<Node> que;

bool vis[N];
void dijkstra(int sx,int sy,int lx,int rx,int ly,int ry)
{
    int x,y,xx,yy;
    for(int i=lx;i<=rx;++i)
        for(int j=ly;j<=ry;++j)
            dis[poi(i,j)]=INF,vis[poi(i,j)]=0;
    dis[poi(sx,sy)]=0;
    que.push(Node(sx,sy,0));
    while(!que.empty())
    {
        x=que.top().x,y=que.top().y;
        que.pop();
        if(vis[poi(x,y)])
            continue;
        vis[poi(x,y)]=1;
        for(int i=0;i<4;++i)
        {
            xx=x+cx[i],yy=y+cy[i];
            if(xx>=lx&&xx<=rx&&yy>=ly&&yy<=ry&&dis[poi(xx,yy)]>dis[poi(x,y)]+dist[poi(x,y)][i])
            {
                dis[poi(xx,yy)]=dis[poi(x,y)]+dist[poi(x,y)][i];
                que.push(Node(xx,yy,dis[poi(xx,yy)]));
            }
        }
    }
}

void solve(int lx,int rx,int ly,int ry,int lq,int rq)
{
    if(lq>rq)
        return;
    if(lx==rx&&ly==ry)
    {
        for(int i=lq;i<=rq;++i)
            ans[q[i].id]=0;
        return;
    }
    if(rx-lx>ry-ly)
    {
        int mid=(lx+rx)>>1,h1=0,h2=0;
        for(int i=ly;i<=ry;++i)
        {
            dijkstra(mid,i,lx,rx,ly,ry);
            for(int j=lq;j<=rq;++j)
                ans[q[j].id]=min(ans[q[j].id],dis[poi(q[j].x,q[j].y)]+dis[poi(q[j].xx,q[j].yy)]);
        }
        for(int i=lq;i<=rq;++i)
        {
            if(q[i].x<=mid&&q[i].xx<=mid)
                q1[++h1]=q[i];
            else if(q[i].x>mid&&q[i].xx>mid)
                q2[++h2]=q[i];
        }
        for(int i=1;i<=h1;++i)
            q[lq+i-1]=q1[i];
        for(int i=1;i<=h2;++i)
            q[lq+h1-1+i]=q2[i];
        solve(lx,mid,ly,ry,lq,lq+h1-1),solve(mid+1,rx,ly,ry,lq+h1,lq+h1+h2-1);
    }
    else
    {
        int mid=(ly+ry)>>1,h1=0,h2=0;
        for(int i=lx;i<=rx;++i)
        {
            dijkstra(i,mid,lx,rx,ly,ry);
            for(int j=lq;j<=rq;++j)
                ans[q[j].id]=min(ans[q[j].id],dis[poi(q[j].x,q[j].y)]+dis[poi(q[j].xx,q[j].yy)]);
        }
        for(int i=lq;i<=rq;++i)
        {
            if(q[i].y<=mid&&q[i].yy<=mid)
                q1[++h1]=q[i];
            else if(q[i].y>mid&&q[i].yy>mid)
                q2[++h2]=q[i];
        }
        for(int i=1;i<=h1;++i)
            q[lq+i-1]=q1[i];
        for(int i=1;i<=h2;++i)
            q[lq+h1-1+i]=q2[i];
        solve(lx,rx,ly,mid,lq,lq+h1-1),solve(lx,rx,mid+1,ry,lq+h1,lq+h1+h2-1);
    }
}

int main()
{
    n=read(),m=read();
    for(int i=1;i<=n;++i)
        for(int j=1;j<m;++j)
            dist[poi(i,j)][1]=dist[poi(i,j+1)][3]=read();
    for(int i=1;i<n;++i)
        for(int j=1;j<=m;++j)
            dist[poi(i,j)][2]=dist[poi(i+1,j)][0]=read();
    Q=read();
    for(int i=1;i<=Q;++i)
        q[i].x=read(),q[i].y=read(),q[i].xx=read(),q[i].yy=read(),q[i].id=i;
    memset(ans,0x3f,sizeof(ans));
    solve(1,n,1,m,1,Q);
    for(int i=1;i<=Q;++i)
        printf("%d\n",ans[i]);
    return 0;
}

 

转载于:https://www.cnblogs.com/lovewhy/p/9633796.html

资源下载链接为: https://pan.quark.cn/s/1e68be2bff6a 这些压缩包文件里有大约60个小程序的源码示例,是学习小程序开发的优质资源。小程序是一种无需下载安装就能用的轻量级应用,广泛应用于生活服务、电商购物、社交互动等众多领域。研究这些源码,开发者能深入学习小程序开发技术和最佳实践。wx_app-master.zip可能是一个基础小程序项目模板,涵盖小程序的基本结构和组件使用。学习者可借此了解小程序的目录结构、配置文件,以及wxml、wxss和JavaScript的结合方式。BearDiary-master.zip和weapp-bear-diary-master.zip可能是日记类小程序示例,展示如何实现用户记录、查看和管理个人日记等功能,包括处理用户输入、存储数据和创建交互式界面。WXNews-master.zip和仿知乎日报.zip可能是新闻阅读类小程序的源码,使用网络请求API获取实时新闻数据并展示。学习者能通过这些代码学习处理网络请求、动态加载数据和设计适应性强的布局。wechat-weapp-gank-master.zip可能是一个类似“干货集中营”的技术分享平台小程序示例,涉及数据分类、搜索功能和用户交互设计,可学习如何组织和展示大量数据及实现筛选和搜索功能。Xiaoxiazhihu (知乎日报) 微信小程序 d.zip是仿知乎日报的小程序,涉及数据同步、新闻详情页设计和滑动效果实现,是模仿流行应用界面和用户体验的良好学习案例。仿豆瓣电影-demo.zip提供电影信息查询和展示功能,可能涉及API接口调用、数据解析以及评分和评论系统实现,有助于开发者理解如何集成外部服务和处理展示多媒体内容。仿今日头条app.zip类似今日头条的小程序,涵盖新闻推荐算法、个性化推荐和推送通知等复杂功能,能让开发者学习处理大数据流和提供个性化用户体验。
资源下载链接为: https://pan.quark.cn/s/76d9f06f4cda Vue.js 是一款由尤雨溪开发的轻量级前端 JavaScript 框架,凭借简洁的 API、高效的虚拟 DOM、组件化设计以及强大的生态系统,在现代 Web 开发领域广受欢迎。在开发“基于 Vue 的电商后台管理系统”时,Vue.js 发挥了核心作用,助力构建出高效且易于维护的管理界面。 Vue.js 的核心特性包括:虚拟 DOM,通过计算差异仅更新必要部分,避免直接操作 DOM 产生的性能损耗;双向数据绑定,借助 v-bind 和 v-model 指令,实现视图与模型数据的同步;指令系统,如 v-if、v-for、v-on 等,扩展 HTML 行为,增强模板功能;组件化,允许开发者创建可复用的 UI 部件,每个组件拥有独立的视图和数据逻辑,便于独立开发、测试与重用。 在电商后台管理系统中,常见的组件有商品列表、订单管理、用户管理等,它们通过 props 接收父组件数据,并通过事件向父组件传递信息,组件可嵌套以构建复杂 UI 结构。对于多页面应用,Vue.js 结合 Vue Router 实现页面跳转,Vue Router 支持动态路由匹配、命名路由、路由懒加载等功能,助力单页应用(SPA)的构建。Vuex 作为 Vue.js 的官方状态管理工具,可用于集中管理全局共享状态,如用户登录状态、购物车信息等,通过 actions、mutations 和 getters 实现状态的改变与获取。Vue.js 通常搭配 Axios 库进行 API 请求,处理后端接口数据,在电商后台管理系统中,涉及商品的增删改查、订单的创建更新、用户信息同步等操作,都需要与后端交互。Vue.js 支持使用 Jest 或 Mocha 等测试框架进行单元测试和集成测试,这对于电商后台管理系统尤为重要,能够及时发现并
资源下载链接为: https://pan.quark.cn/s/edccc07f4fda “吉林大学数据库实验代码和实验报告.zip”是一个包含数据库课程实验资料的压缩包,涵盖了实验代码、实验报告以及学习资源。这些资料有助于深入理解数据库原理、操作以及编程语言与数据库的交互。 实验报告:“55170606刘桦数据库应用程序开发实验报告.doc”记录了实验的全过程,包括实验目标、环境搭建、操作步骤、遇到的问题及解决方法和总结。通过阅读这份报告,能够掌握数据库应用开发的核心技术和实践经验。 数据库与Java交互:“JAVA 对DB2中的BLOB对象的.ppt”介绍了如何在Java中处理DB2数据库的BLOB对象。BLOB用于存储大量二进制数据,如图片、音频或视频。该教程可能涉及使用JDBC API进行数据库连接、SQL语句执行以及BLOB数据的处理。 操作演示:“操作演示.rar”可能包含数据库操作的示例,通过SQL脚本或图形化工具展示数据库的增删改查等基本操作以及复杂查询和事务管理,帮助学生更好地理解数据库的实际操作。 任务文件:“task1”至“task10”代表实验的不同阶段,每个任务对应一个数据库概念或技术,如关系模型、索引、视图、存储过程等。通过完成这些任务,学生可以逐步掌握数据库设计和管理的核心技能。 CG11 DB2 programming with Java:这可能是一份关于使用Java进行DB2数据库编程的课程材料,详细介绍了如何使用Java编写数据库应用程序,涵盖JDBC驱动、连接池、事务处理等内容。 task9和task2:这两个文件可能涉及特定的数据库技术或挑战,如数据库优化、并发控制、备份恢复等,有助于学生提升数据库系统的实际操作能力。 该压缩包提供了丰富的数据库学习资源,包含理论知识和实践环节,是学习数据库管理、编程和系统设计的良好素材。通过深入研究
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值