题意:
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
思路:
处理出这棵树的欧拉序,入栈时为这个点的正权,出栈时为这个点的负权
对于操作1,对x入栈点加a,出栈点减a
对于操作2,对x入栈点到x出栈点所有的点执行操作1
对于操作3,即查询点1的入栈点到x入栈点的点权和
在正常的区间加线段树中,有一个add,add对区间和sum[root]的贡献为(r-l+1)*add
对这一题,我们记入栈点的flg为1,出栈点的为-1,那么在flg求和的情况下,add对区间和的贡献为flg[root]*add
正常搞线段树即可
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef long long LL; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 998244353; const int maxn = 2e6+100; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; const db pi = acos(-1.0); int n, m; ll a[maxn]; vector<int>v[maxn]; int tot; int in[maxn],out[maxn];//树上i的出、入在rk位置 ll rk[maxn]; int vis[maxn];//in 1 , out 0 void dfs(int x, int fa){ ++tot;in[x]=tot;rk[tot]=a[x];vis[tot]=1; for(int i = 0; i < (int)v[x].size(); i++){ int y = v[x][i]; if(y!=fa)dfs(y,x); } ++tot;out[x]=tot;rk[tot]=-a[x];vis[tot]=0; } ll flg[maxn],lazy[maxn]; ll sum[maxn]; void build(int l, int r, int root){ if(l==r){ if(vis[l])flg[root]=1; else flg[root]=-1; sum[root]=rk[l]; return; } int mid = (l+r)>>1; build(lson); build(rson); sum[root]=sum[lc]+sum[rc]; flg[root]=flg[lc]+flg[rc]; } void pushdown(int l, int r, int root){ if(!lazy[root])return; lazy[lc]+=lazy[root]; lazy[rc]+=lazy[root]; sum[lc]+=lazy[root]*flg[lc]; sum[rc]+=lazy[root]*flg[rc]; lazy[root]=0; return; } void update(int x, int y, int val, int l, int r, int root){ int mid = (l+r)>>1; if(x<=l&&r<=y){ lazy[root]+=val; sum[root]+=val*flg[root]; return; } pushdown(l, r, root); if(x<=mid)update(x,y,val,lson); if(y>mid)update(x,y,val,rson); sum[root]=sum[lc]+sum[rc]; return; } ll query(int x, int y, int l, int r, int root){ int mid = (l+r)>>1; if(x<=l&&r<=y)return sum[root]; pushdown(l, r, root); ll ans = 0; if(x<=mid)ans+=query(x,y,lson); if(y>mid)ans+=query(x,y,rson); return ans; } int main() { scanf("%d %d", &n, &m); for(int i = 1; i <= n; i++){ scanf("%lld", &a[i]); } for(int i = 1; i <= n-1; i++){ int x, y; scanf("%d %d" ,&x, &y); v[x].pb(y); v[y].pb(x); } dfs(1,-1); build(1,tot,1); while(m--){ int op, x, y; scanf("%d", &op); if(op==1){ scanf("%d %d" ,&x ,&y); update(in[x],in[x],y,1,tot,1); update(out[x],out[x],y,1,tot,1); } else if(op==2){ scanf("%d %d", &x ,&y); update(in[x],out[x],y,1,tot,1); } else{ scanf("%d", &x); printf("%lld\n",query(1,in[x],1,tot,1)); } } return 0; } /* 5 5 1 2 3 4 5 1 2 1 4 2 3 2 5 3 3 1 2 1 3 5 2 1 2 3 3 */