矩阵的微商

关于矩阵微商的定义都是建立在一个矩阵对一个标量微商的定义之上.

设$\mathbf{A}$和$\mathbf{B}$是$n\times m$矩阵,$\mathbf{C}$是$m\times k$矩阵, $\beta$是标量.

$\mathbf{A}$和$\beta$的偏微商定义为
\begin{equation}\label{eq1}
\frac{\partial \mathbf{A}}{\partial \beta}=\left[\frac{\partial a_{ij}}{\partial \beta}\right],
\end{equation}
由定义易知
\begin{equation}\label{eq2}
\frac{\partial }{\partial \beta}(\mathbf A+\mathbf B)=\frac{\partial \mathbf A}{\partial \beta}+\frac{\partial\mathbf B}{\partial \beta},
\end{equation}

\begin{equation}\label{eq3}
\frac{\partial}{\partial\beta}({\mathbf {AC}})=\frac{\partial\mathbf A}{\partial \beta}\mathbf C+\mathbf A\frac{\partial \mathbf C}{\partial \beta}.
\end{equation}

设$\mathbf A$为$n$阶可逆方阵, $\mathbf I$ 为$n$阶单位阵.
由$\mathbf {AA}^{-1}=\mathbf I$知
\begin{equation}\label{eq4}
\frac{\partial \mathbf A^{-1}}{\partial\beta}=-\mathbf A^{-1}\frac{\partial \mathbf A}{\partial\beta}\mathbf A^{-1}.
\end{equation}

现在讨论对向量的微商.

设$\mathbf x=[x_1,x_2,\dots,x_n]^T$,其中$T$表示转置,$Q$为一标量,$Q$对$\mathbf{x}$的微商定义为
\begin{equation}\label{eq5}
\frac{\partial Q}{\partial\mathbf x}=
\begin{bmatrix}
\frac{\partial Q}{\partial x_1}\\ \vdots \\ \frac{\partial Q}{\partial x_n}
\end{bmatrix}
\end{equation}

设$\mathbf A$是$n\times n$数量矩阵,$Q=\mathbf x^T \mathbf A \mathbf x$,考虑$\dfrac{\partial Q}{\partial\mathbf x}$.

先计算对标量$x_k$的微商.
\begin{align*}
\frac{\partial Q}{\partial x_k}
= \frac{\partial(\mathbf x^T \mathbf A \mathbf x)}{\partial x_k}
=\frac{\partial\mathbf x^T}{\partial x_k}(\mathbf A \mathbf x)+\mathbf x^T \mathbf A\frac{\partial\mathbf x}{\partial x_k}
= \mathbf e_k^T \mathbf A\mathbf x+\mathbf x^T \mathbf A \mathbf e_k ,
\end{align*}
其中
\[
\frac{\partial\mathbf x^T}{\partial x_k}=[0,\cdots,0,1,0,\cdots,0]=\mathbf e_k^T,
\]
注意到$\mathbf x^T \mathbf A \mathbf e_k$是一个标量,所以
\[
\mathbf x^T \mathbf A\mathbf e_k=(\mathbf x^T \mathbf A \mathbf e_k)^T=\mathbf e_k^T \mathbf A^T\mathbf x,
\]
因此
\begin{equation}\label{eq6}
\frac{\partial Q}{\partial x_k}=\mathbf e_k^T(\mathbf A+\mathbf A^T)\mathbf x.
\end{equation}
从而有
\begin{equation}\label{eq7}
\frac{\partial Q}{\partial\mathbf x}=
\begin{bmatrix}
\frac{\partial Q}{\partial x_1}\\ \vdots \\ \frac{\partial Q}{\partial x_n}
\end{bmatrix}=
\begin{bmatrix}
\mathbf e_1^T(\mathbf A+\mathbf A^T)\mathbf x\\ \vdots \\ \mathbf e_n^T(\mathbf A+\mathbf A^T)\mathbf x
\end{bmatrix}=
\mathbf I(\mathbf A+\mathbf A^T)\mathbf x=(\mathbf A+\mathbf A^T)\mathbf x.
\end{equation}

若$\mathbf A$为$n$阶对称方阵,则进一步有
\begin{equation}\label{eq8}
\frac{\partial Q}{\partial \mathbf x}=2\mathbf A\mathbf x.
\end{equation}

转载于:https://www.cnblogs.com/yinjc/p/7977285.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值