容斥原理练习

博客介绍了HDU三道题的解题思路。HDU 4135求区间内与N互质数的个数,通过找出质因子并指数级容斥求解;HDU 4059求与n互质数的四次方和,同样用找质因子和容斥的方法;HDU 5201求物品分配方案数,需先枚举第一个人拿到的物品数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. HDU 4135

\([A,B]\) 中有多少个数与 \(N\) 互质。 \(A,B\le 10^{15},N\le 10^9\)

\(O(\sqrt n)\) 找出 \(n\) 的所有质因子,然后指数级容斥。可以证明质因子个数不会超过15个。

B. HDU 4059

\(T\le 1000\) 组询问,给定 \(n\) ,求与 \(n\) 互质的数的四次方和。

\(O(\sqrt n)\) 找出 \(n\) 的所有质因子,然后指数级容斥。可以证明质因子个数不会超过6个。

C. HDU 5201

\(n\) 件物品, \(m\) 个人,现在要把物品分给人,要求没有一个人拿到的物品数大于等于第一个人拿到的物品数。求方案数。多组数据。 \(T\le 25,n,m\le 10^5\)

先枚举第一个人拿到的物品数 \(i\)
然后就要求把 \(n-i\) 个物品分给 \(m-1\) 个人且每个人不能超过 \(i\) 的方案数。

转载于:https://www.cnblogs.com/BlogOfchc1234567890/p/10885615.html

容斥原理是一种计数方法,用于解决集合中某些对象的数目的问题。它的基本思想是先计算包含于某个内容中的所有对象的数目,然后排除重复计算的对象,以确保计数结果既不遗漏又没有重复。在容斥原理的应用中,通常需要先求出所有包含的区间,然后使用欧拉函数求和,并进行一些补充操作,例如乘以某个系数或减去一个常数。在使用容斥原理时,需要注意一些细节,例如在枚举因子时要注意使用最小公倍数(LCM),而不是直接相乘。如果容斥问题中的集合可能包含0,还需要特殊处理。至于如何使用容斥原理在MATLAB中求解具体的问题,我需要更多的上下文信息才能给出具体的指导。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [容斥原理](https://blog.csdn.net/ling_wang/article/details/80488797)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [容斥原理练习记录](https://blog.csdn.net/z631681297/article/details/81318279)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值