luogu P3721 [AH2017/HNOI2017]单旋

本文介绍了一种基于二叉查找树和LCT树的数据结构优化方法,用于处理动态插入、删除和查询操作。通过使用set维护树中的数值,可以快速找到前驱和后继节点,进一步利用LCT树进行树旋转和维护父子关系,实现高效的数据管理和查询。
摘要由CSDN通过智能技术生成

传送门

\(Spaly:\)???

考虑在暴力模拟的基础上优化

如果要插入一个数,那么根据二叉查找树的性质,这个点一定插在他的前驱的右子树或者是后继的左子树,可以利用set维护当前树里面的数,方便查找前驱后继.不过具体要插到前驱处还是后继处呢?可以把前驱后继在树上的lca找出来,看一下新点如果小于lca的值,往前驱那边走;反之类似

然后后面操作都类似,把树中最值旋到根,可能会删除.通过手玩发现如果要旋最小值,那么最终树中,这个点的父亲的左儿子为这个点的右儿子,并且这个点的右儿子是原来的根,其他的点的父子关系都不变;反之类似.所以可以无脑用lct维护整棵树,在lct上修改连边的关系;同时利用lct也可以求出两点的lca.某个点的深度就是到根节点路径上点的个数

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double

using namespace std;
const int N=100000+10,inf=1e9;
il int rd()
{
  int x=0,w=1;char ch=0;
  while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
  while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
  return x*w;
}
int m,n,qq[N],a[N],b[N],p[N],ff[N],lc[N],rc[N],rt;
int fa[N],ch[N][2],sz[N];
bool tgr[N];
il void psup(int x){sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+1;}
il bool nrt(int x){return ch[fa[x]][0]==x||ch[fa[x]][1]==x;}
il void rot(int x)
{
  int y=fa[x],z=fa[y],yy=ch[y][1]==x,w=ch[x][!yy];
  if(nrt(y)) ch[z][ch[z][1]==y]=x;
  ch[y][yy]=w,ch[x][!yy]=y;
  if(w) fa[w]=y;
  fa[y]=x,fa[x]=z;
  psup(y);
}
il void rev(int x)
{
  swap(ch[x][0],ch[x][1]),tgr[x]^=1;
}
il void psdn(int x)
{
  if(tgr[x])
    {
      if(ch[x][0]) rev(ch[x][0]);
      if(ch[x][1]) rev(ch[x][1]);
      tgr[x]=0;
    }
}
il void ppush(int x)
{
  if(nrt(x)) ppush(fa[x]);
  psdn(x);
}
il void spl(int x)
{
  ppush(x);
  while(nrt(x))
    {
      int y=fa[x],z=fa[y];
      if(nrt(y)) ((ch[y][1]==x)^(ch[z][1]==y))?rot(x):rot(y);
      rot(x);
    }
  psup(x);
}
il void acs(int x)
{
  for(int y=0;x;y=x,x=fa[x])
    spl(x),ch[x][1]=y,psup(x);
}
il void mkrt(int x)
{
  acs(x),spl(x),rev(x);
}
il void split(int x,int y)
{
  mkrt(x),acs(y),spl(y);
}
il void link(int x,int y)
{
  if(!x||!y) return;
  split(x,y),fa[x]=y;
}
il void cut(int x,int y)
{
  if(!x||!y) return;
  split(x,y),fa[x]=ch[y][0]=0,psup(y);
}
set<int> s1,s2;
set<int>::iterator it;

int main()
{
  m=rd();
  for(int i=1;i<=m;++i)
    {
      qq[i]=rd();
      if(qq[i]==1) ++n,a[n]=b[n]=rd();
    }
  sort(b+1,b+n+1);
  for(int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+n+1,a[i])-b,p[a[i]]=i;
  s1.insert(0),s1.insert(1<<30),s2.insert(0),s2.insert(-(1<<30));
  for(int i=1,j=1;i<=m;++i)
    {
      if(qq[i]==1)
        {
          int ft=-(*(s2.lower_bound(-a[j]))),nt=*(s1.lower_bound(a[j])),w=p[a[j]];
          if(!ft&&nt>inf) rt=w;
          else if(!ft) ff[w]=p[nt],lc[p[nt]]=w,fa[w]=p[nt];
          else if(nt>inf) ff[w]=p[ft],rc[p[ft]]=w,fa[w]=p[ft];
          else
            {
              int x=p[ft],y=p[nt],z=0;
              mkrt(rt),acs(x);
              for(int yy=y;yy;z=yy,yy=fa[yy])
                spl(yy),ch[yy][1]=z,psup(yy);
              if(a[j]<a[z]) ff[w]=x,rc[x]=w,fa[w]=x;
              else ff[w]=y,lc[y]=w,fa[w]=y;
            }
          s1.insert(a[j]),s2.insert(-a[j]);
          split(rt,w);
          printf("%d\n",sz[w]);
          ++j;
        }
      else if(qq[i]&1)
        {
          it=s2.begin();
          int w=-(*(++it)),x=p[w];
          split(rt,x);
          printf("%d\n",sz[x]);
          if(sz[x]==1)
            {
              if(qq[i]==5)
                {
                  int y=lc[x];
                  cut(x,y);
                  if(y) ff[y]=0,rt=y;
                  lc[x]=0;
                  s1.erase(s1.find(w)),s2.erase(s2.find(-w));
                }
              continue;
            }
          int y=lc[x],z=ff[x];
          ff[y]=z;
          if(z) rc[z]=y;
          ff[x]=lc[x]=0;
          cut(x,z),cut(y,x),link(y,z);
          if(qq[i]==3) lc[x]=rt,link(rt,x),ff[rt]=x,rt=x;
          else s1.erase(s1.find(w)),s2.erase(s2.find(-w));
        }
      else 
        {
          it=s1.begin();
          int w=*(++it),x=p[w];
          split(rt,x);
          printf("%d\n",sz[x]);
          if(sz[x]==1)
            {
              if(qq[i]==4)
                {
                  int y=rc[x];
                  cut(x,y);
                  if(y) ff[y]=0,rt=y;
                  rc[x]=0;
                  s1.erase(s1.find(w)),s2.erase(s2.find(-w));
                }
              continue;
            }
          int y=rc[x],z=ff[x];
          ff[y]=z;
          if(z) lc[z]=y;
          ff[x]=rc[x]=0;
          cut(x,z),cut(y,x),link(y,z);
          if(qq[i]==2) rc[x]=rt,link(rt,x),ff[rt]=x,rt=x;
          else s1.erase(s1.find(w)),s2.erase(s2.find(-w));
        }
    }
  return 0;
}

转载于:https://www.cnblogs.com/smyjr/p/10103394.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值