LeetCode "Maximum Product Subarray"

Intuitively there must a O(n) solution.

First I tried a bottom-up DP solution but it had a TLE:

class Solution {
public:
    int maxProduct(int A[], int n) {
        vector<int> dp;dp.resize(n);
        dp.assign(A, A + n);

        int max = *std::max_element(A, A + n);
        for (size_t len = 2; len <= n; len ++)
        for (int i = 0; i <= n - len; i ++)
        {
            dp[i] *= A[i + len - 1];
            max = std::max(max, dp[i]);
        }

        return max;
    }
};

 So what is O(n) solution then? The idea is to keep track of 2 lines: one for positive and one for negative. Inspired by:

https://oj.leetcode.com/discuss/11923/sharing-my-solution-o-1-space-o-n-running-time

转载于:https://www.cnblogs.com/tonix/p/3995924.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值