hdu 4638 Group(线段树,离线维护左边界,4级)

Group

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 369    Accepted Submission(s): 207


Problem Description
There are n men ,every man has an ID(1..n).their ID is unique. Whose ID is i and i-1 are friends, Whose ID is i and i+1 are friends. These n men stand in line. Now we select an interval of men to make some group. K men in a group can create K*K value. The value of an interval is sum of these value of groups. The people of same group's id must be continuous. Now we chose an interval of men and want to know there should be how many groups so the value of interval is max.
 

Input
First line is T indicate the case number.
For each case first line is n, m(1<=n ,m<=100000) indicate there are n men and m query.
Then a line have n number indicate the ID of men from left to right.
Next m line each line has two number L,R(1<=L<=R<=n),mean we want to know the answer of [L,R].
 

Output
For every query output a number indicate there should be how many group so that the sum of value is max.
 

Sample Input
 
  
1 5 2 3 1 2 5 4 1 5 2 4
 

Sample Output
 
  
1 2
 

Source
 

Recommend
zhuyuanchen520
 
思路:离线处理,维护左边界,树状数组记录,从左界到开始的不连续段个数。
         如何找不连续段呢? 判断比i大1小1的再不在区间就可以了。接下来就水了。

失误:多校时怎么没想到这么找区间呢。其实感觉不难。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define FOR(i,a,b) for(int i=a;i<=b;++i)
#define clr(f,z) memset(f,z,sizeof(f))
using namespace std;
const int mm=1e5+9;
int c[mm],id[mm],zf[mm],ans[mm];
class Edge
{
public:
    int l,r,id;
    bool operator <(const Edge&x)const
    {
        return l<x.l;
    }
} f[mm];
int lowbit(int x)
{
    return x&(-x);
}
void add(int pos,int val)
{
    for(int i=pos; i<mm; i+=lowbit(i))
        c[i]+=val;
}
int get_sum(int pos)
{
    int ret=0;
    for(int i=pos; i>0; i-=lowbit(i))
        ret+=c[i];
    return ret;
}
int cas,n,m;
int main()
{
    while(~scanf("%d",&cas))
    {
        while(cas--)
        {
            scanf("%d%d",&n,&m);
            FOR(i,1,n)
            {
                scanf("%d",&zf[i]);
                id[zf[i]]=i;
            }
            id[0]=id[n+1]=n+3;
            FOR(i,1,m)
            {
                scanf("%d%d",&f[i].l,&f[i].r);f[i].id=i;
            }
            clr(c,0);
            FOR(i,1,n)
            {
                if( id[ zf[i]+1 ]>i && id[ zf[i]-1 ]>i )///两个都在后面是孤立点
                {
                    add(i,1);
                }
                else if( id[ zf[i]+1 ]<i && id[ zf[i]-1 ]<i )///两个都在前面,加入就合并
                {
                    add(i,-1);
                }
            }
            sort(f+1,f+m+1);
           // FOR(i,1,n)//cout<<c[i]<<endl;
            //cout<<get_sum(6)<<endl;
            int i=1,j=1;
            while(j<=m)
            {
                while(i<=n&&i<f[j].l)//去除小于左界影响
                {
                    if( id[zf[i]+1 ]>i && id[zf[i]-1 ]>i )
                    {
                        add(i,-1);
                        add(id[zf[i]+1 ],1);
                        add(id[zf[i]-1 ],1);
                    }
                    else if( id[zf[i]+1 ]<i && id[zf[i]-1 ]<i )
                    {
                        add(i,-1);
                    }
                    else if( id[zf[i]+1 ]>i )
                    {
                        add(i,-1);
                        add(id[zf[i]+1],1);
                    }
                    else if( id[zf[i]-1 ]>i )
                    {
                        add(i,-1);
                        add(id[zf[i]-1 ],1);
                    }
                    ++i;
                }
                while(j<=m&&f[j].l<=i)
                {
                  ans[f[j].id]=get_sum(f[j].r);
                  ++j;
                }
          }
          FOR(i,1,m)
          printf("%d\n",ans[i]);
        }
    }
    return 0;
}

     
 

转载于:https://www.cnblogs.com/nealgavin/p/3797621.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值