雾检测算法

本文综述了几种雾检测算法,包括通过HSV模型中饱和度和值的比例,RGB相关性和饱和度,以及图像颜色直方图进行雾检测。算法主要依赖于消失点定位、颜色特征和对比度分析,旨在改善道路驾驶的安全性。
摘要由CSDN通过智能技术生成

 

[1]Jeong K, Choi K, Kim D, et al. Fast Fog Detection for De-Fogging of Road Driving Images[J]. Ieice Transactions on Information & Systems, 2018, 101(2):473-480.

为了检测雾, 将感兴趣区域 (ROI) 设置为以消失点为中心的一定距离。本文研究了输入图像中的行车车道, 绘制了其延伸线, 并确定了两条延长线交叉为消失点的点。即, 为了理想的设置手动确定了消失点。

然后, 在设置的 ROI 中计算了 HSV 颜色模型域中的饱和度S和值 (V) 的比值,该特性主要用于雾检测。另一方面, 道路环境的突变可能会使某些计算的S/V 比值异常。使用该属性, 雾不会突然消失或没有出现, 我们通过对 S/V 比率应用时间筛选temporal filter, 大大减少了异常值。

如果 ROI 中的颜色不清楚, 则 HSV 颜色模型的 S 值往往较小。此外, 由于有雾的 ROI 有相对浅灰色, 它往往有一个大的 V 值。因此,有雾的ROI中的V/S比率将很大。因此, 我们可以将 S 和 V 的比值定义为一个特征来判断雾的存在. 

最后, 将R与雾检测的阈值进行比较。如果R大于阈值, 则有雾。否则, 无雾。


[2] S. Alami, A. Ezzine, and F. Elhassouni, “Local fog detection based on saturation and RGB-correlation,” Proc. IEEE International Conference Computer Graphics, Imaging and Visualization, pp.1–5, March 2016.  

提出了一种基于饱和度和在图像消失点周

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值