[1]Jeong K, Choi K, Kim D, et al. Fast Fog Detection for De-Fogging of Road Driving Images[J]. Ieice Transactions on Information & Systems, 2018, 101(2):473-480.
为了检测雾, 将感兴趣区域 (ROI) 设置为以消失点为中心的一定距离。本文研究了输入图像中的行车车道, 绘制了其延伸线, 并确定了两条延长线交叉为消失点的点。即, 为了理想的设置手动确定了消失点。
然后, 在设置的 ROI 中计算了 HSV 颜色模型域中的饱和度S和值 (V) 的比值,该特性主要用于雾检测。另一方面, 道路环境的突变可能会使某些计算的S/V 比值异常。使用该属性, 雾不会突然消失或没有出现, 我们通过对 S/V 比率应用时间筛选temporal filter, 大大减少了异常值。
如果 ROI 中的颜色不清楚, 则 HSV 颜色模型的 S 值往往较小。此外, 由于有雾的 ROI 有相对浅灰色, 它往往有一个大的 V 值。因此,有雾的ROI中的V/S比率将很大。因此, 我们可以将 S 和 V 的比值定义为一个特征来判断雾的存在.
最后, 将Rj 与雾检测的阈值进行比较。如果Rj 大于阈值, 则有雾。否则, 无雾。
[2] S. Alami, A. Ezzine, and F. Elhassouni, “Local fog detection based on saturation and RGB-correlation,” Proc. IEEE International Conference Computer Graphics, Imaging and Visualization, pp.1–5, March 2016.
提出了一种基于饱和度和在图像消失点周