今天看了算法导论里面的动态规划(DP),有个有意思的问题:钢条切割来获取最大的收益。
书中讲到了几种求解方法,包括递归求解法、备忘录DP解法、自底向上的解法以及对解的重构。
书中给出不同解法的伪码,刚好需要练习c++,就有c++来实现DP求解钢条切割问题。
【递归求解】
// 钢条切割问题
// 自顶向下 递归实现
#include <iostream>
#include <time.h>
using namespace std;
int cut_rod(int len, int price_arr[]);
int main(int argc, char *argv[])
{
clock_t start, finish;
double duration;
start = clock();
int rod_len = 10;
int p_arr[] = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
int profit = cut_rod(rod_len, p_arr);
cout << "profit = " << profit << endl;
finish = clock();
duration = (double)(finish - start)/CLOCKS_PER_SEC; // 单位 s
cout << "time cost = " << duration * 1000 << "ms" << endl;
return 0;
}
/* 递归调用 cut_rod 函数
* input: 钢条长度len, 单位钢条长度价格表price_arr[]
* output: 长度为len的钢条的最佳收益
*
* 思想:
* 1. 如果len==0,返回收益0
* 2. 否则,把钢条切割为左边长度为i 和右边长度为len-i 的两段,
* 长度为i的一段不在切割,收益为price_arr[i], 右边部分继续分解。
* 注意:
* 1. 程序存在访问风险;当输入长度大于 p_arr[]长度时,会访问到数组之外的元素;
* 因此程序仅对 len < sizeof(p_arr)/sizeof(int) 的数据有效;
*/
int cut_rod(int len, int price_arr[])
{
if (len == 0)
return 0;
int best_profit = -100;
for (int i = 1; i <= len; i++)
{
best_profit = max(best_profit, price_arr[i] + cut_rod(len-i, price_arr));
}
return best_profit;
}
【自底向上DP重构解】
自底向上重构解包括自底向上求解法,因此在这儿只传重构的解法;
文章假定在钢条长度大于10英寸时,售价仍然为30美元,这样对输入的钢条长度就没有限制<当然这很不科学>;
/* DP 解决 钢条切割问题
* 不仅返回长度为len的钢条的最大收益r[],而且返回切割情况s[](重构的解)
* 重构的解也是分析子问题的性质决定的
*/
#include <iostream>
#include <string.h>
#define rod_len 17
#define LEN rod_len + 1
using namespace std;
void extend_bottom_up_cut_rod(int len, int price_arr[], int (&r)[LEN], int (&s)[LEN]);
void print_cut_rod_solution(int len, int price_arr[], int (&r)[LEN], int (&s)[LEN]);
int main(int argc, char *argv[])
{
int price[] = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
int r[LEN], s[LEN];
memset(r, 0, sizeof(r));
memset(s, 0, sizeof(s));
print_cut_rod_solution(rod_len, price, r, s);
return 0;
}
void extend_bottom_up_cut_rod(int len, int price_arr[], int (&r)[LEN], int (&s)[LEN])
{
if (len == 0)
return;
for (int j = 1; j <= len; j++)
{
int p = -1000;
for (int i = 1; i <= j; i++) // 长度为j的钢条,切割i
{
int left_price;
if (i > 10)
left_price = price_arr[10];
else
left_price = price_arr[i];
if (p < left_price + r[j-i])
{
p = left_price + r[j-i];
s[j] = i;
}
}
r[j] = p;
}
}
void print_cut_rod_solution(int len, int price_arr[], int (&r)[LEN], int (&s)[LEN])
{
extend_bottom_up_cut_rod(len, price_arr, r, s);
cout << len << " inch rod price is " << r[len] << endl;
cout << "the cut order is ";
while (len > 0)
{
cout << s[len] << " ";
len -= s[len];
}
}