28. Implement strStr()

题目:

Implement strStr().

Returns the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.

Update (2014-11-02):
The signature of the function had been updated to return the index instead of the pointer. If you still see your function signature returns a char * or String, please click the reload button  to reset your code definition.

链接:  http://leetcode.com/problems/implement-strstr/

题解:

这道题虽然是easy难度,但解法很多,在一个美好的labor day下午让我头很大。可以有Brute force,KMP,Rabin-Karp,以及Suffix Array / Suffix Tree等等。 有关Suffix Tree真的要好好看一看,虽然现在还不懂,不过有种感觉这是解决String matching问题的终极武器(之一)。像MIT Advanced Data Structures里String那一课里大神Eric Demaine就讲得很清楚。要多看几遍。至于KMP,Rabin-Karp和Suffix Array可以看Princeton大神Sedgewick的课件和booksite。先占坑,根据学习进度一点一点补充各个解法。这些东西以前是unknown unknown, 现在是known unknown,要好好努力把他们变成known known。就像费德勒2016奔驰广告片一样, commitment, pushing your self further,faster,reaching ever high。

下面先来看Brute force:

从头开始暴力查找。  Time Complexity - O(m * n), Space Complexity - O(1).

public class Solution {
    public int strStr(String haystack, String needle) {
        if(haystack == null || needle == null || haystack.length() < needle.length())
            return -1;
        if(needle.length() == 0)
            return 0;
        
        for(int i = 0; i <= haystack.length() - needle.length(); i++) {
            int j = 0;
            
            while(i + j < haystack.length() && j < needle.length() && haystack.charAt(i + j) == needle.charAt(j)) {
                j++;
                if(j == needle.length()) 
                    return i;
            }
        }
        
        return -1;
    }
}

 

KMP using DFA:

先根据needle构建一个DFA,然后从haystack的第一个字母开始向后找,找到第一个occurrence或者遍历完haystack则循环结束。R代表alphabet字母表,或者Radix,既needle中distinct char的数量,对ASC II码我们可以简单假设为256。假如needle是Unicode则我们需要使用improved KMP,或者其他方法比如Boyer-Moore。 对于Multi String search,则可以使用Rabin-Karp。

Time Complexity - O(n), Pre-process Time - O(m),Space Complexity - O(R * m)。

public class Solution {
    private final static int R = 256;
    private int[][] dfa;
    
    public int strStr(String haystack, String needle) {
        if(haystack == null || needle == null || haystack.length() < needle.length())
            return -1;
        if(needle.length() == 0)
            return 0;
        int hsLen = haystack.length(), ndLen = needle.length();
        dfa = new int[R][ndLen];   
        buildDFA(needle);
        int i, j;
        
        for(i = 0, j = 0; i < haystack.length() && j < needle.length(); i++)
            j = dfa[haystack.charAt(i)][j];
        
        if(j == ndLen)
            return i - ndLen;
        else
            return -1;
    }
    
    private void buildDFA(String needle) {
        int rowNum = dfa.length, colNum = dfa[0].length;
        dfa[needle.charAt(0)][0] = 1;
        
        for(int x = 0, j = 1; j < colNum; j++) {    //x is state, j is col
            for(int c = 0; c < rowNum; c++)         //char
                dfa[c][j] = dfa[c][x];              //copy mismatch cases
            dfa[needle.charAt(j)][j] = j + 1;       //set match cases
            x = dfa[needle.charAt(j)][x];           //update state x - restart case;
        }
    }
}

 

Improved KMP using NFA:

改进版的KMP。 之前的例子因为R - radix的设置,所以可能导致ac时间反而比较慢,可以改进从而使用NFA,从而与pattern的alphabet无关,对Unicode都有效。构建next数组的部分很巧妙,要注意何时回溯。这段code自己也不太明白,看了很久。也不知道算是NFA还是DFA,有机会的话再来补充。

Time Complexity - O(m + n), Space Complexity - O(m)

public class Solution {
    private int[] next;
    
    public int strStr(String haystack, String needle) {
        if(haystack == null || needle == null || haystack.length() < needle.length())
            return -1;
        int m = needle.length(), n = haystack.length();    
        if(n == 0)
            return 0;
        buildNFA(needle);
        int i, j = 0;
        
        for(i = 0; i < n && j < m; i++) {
            while(j >= 0 && haystack.charAt(i) != needle.charAt(j))
                j = next[j];
            j++;
        }
        
        if(j == m)
            return i - m;
        else
            return -1;
    }
    
    private void buildNFA(String needle) {
        int m = needle.length();
        next = new int[m];
        int j = -1;
        
        for(int i = 0; i < m; i++) {
            if(i == 0)                                              //initialize
                next[i] = -1;                                   
            else if(needle.charAt(i) != needle.charAt(j))           //back-tracking
                next[i] = j;
            else                                                    //copy equal cases
                next[i] = next[j];
                
            while(j >= 0 && needle.charAt(i) != needle.charAt(j))   //back-tracking
                j = next[j];
            j++;
        }
    }
}

 

Boyer-Moore:

(待补充)

 

Rabin-Karp:

使用Rolling-Hash。 最后会用到Monte carlo或者Las Vegas method。 Time Complexity - O(m * n), Space Complexity O(p)

(待补充) 

 

Suffix Array:  

以O(n) Time Complexity构建Suffix Array (hard to implement),然后计算。

 (待补充)

 

Suffix Tree:

实际上是Suffix Trie。使用Ukkonen算法以O(n) Time complexity构建Suffix Tree,然后从root向下查找

 (待补充)

--------------------------------------------------------------------------------------------华丽的分割线----------------------------------------------------------------------------------------------------------------------------------------------------------------

二刷:

String search经典问题。二刷要用KMP来完成。是时候彻底弄清楚KMP了。网上资料太多太杂,看了CMU,Stanford,Princeton,UBC等学校的lecture notes,每个implementation都不一样,网友都要被你们玩坏了。这样子看来其实KMP论文只是给了一种generalize的idea,像一个接口,每个人都可以根据这种idea自己来implement个性化的KMP实现。只要最后preprocessing以及search两部分能对上,就是一个正确的kmp实现。

常用的一般有两种匹配方式:

  1. 求出对于每个字符,为了找出self-overlaps来决定我们可以skip多少重复的匹配,我们要find length of longest proper prefix and matching suffix。根据这个prefix table就可以在匹配的过程中skip重复匹配。这里主要参考了CMU的lecture notes以及youtube video。
    1. 建立prefix table。例子pattern = "ACACAGT", table= new int[pattern.length()]。 
        1. 这里proper prefix是指,假如当前字符为最后一个"A",它的prefix的集合 - A, AC, ACA, ACAC
        2. proper suffix是指, 假如当前字符为最后一个“A”, 第一个字符的后缀 -  A, CA, ACA, ACAC 从上面的例子可以看出最长长度为“ACA”的3,那么我们 table[4] = 3。我们依次求出上述pattern的prefix table每个值以后得到 table= [0, 0, 1, 2, 3, 0, 0] - 
      PatternPrefixSuffixlongest self-overlapjtable
      Anullnullnull10
      ACACnull20
      ACAA, ACA, CAA31
      ACACA, AC, ACAC, AC, CACAC42
      ACACAA, AC, ACA, ACACA, CA, ACA, CACAACA53
      ACACAGA, AC, ACA, ACAC, ACACAG, AG, CAG, ACAG, CACAGnull60
      ACACAGTA, AC, ACA, ACAC, ACACA, ACACAGT, GT, AGT, CAGT, ACAGT, CACAGTnull70
      1. 下面是我们用来构建prefix table的逻辑和步骤:
        1. 根据pattern新建一个数组table,长度为m = pattern.length()
        2. table[0] = 0,这里我们没有prefix以及suffix,所以值为0
        3. 初始化i = 1, j = 0, 
        4. 在 i < m的情况下:
          1. pattern[i] == pattern[j]:
            1. table[i] = j + 1,    我们把之前求得的longest prefix长度 j ,加 1,然后赋给 table[i]
            2. i++,   增加i来计算下一个字符
          2. str[i] != str[j]:
            1. 假如j > 0, 那么设置j = table[j - 1], 这里我们对 j 进行回溯。 下一步查看之前是否能有 pattern[j] == pattern[i]
            2. 假如 j = 0,那么说明没有match,
              1. 我们设置 table[i] = 0
              2. i++, 增加i来计算下一个字符
    2. Search。 Search的过程跟构建prefix table基本一样。稍有不同的地方,就是从遍历pattern变为了遍历text,并且多了一个if语句判断找到了第一个全匹配之后如何继续操作
      1. 初始化i = 0, j = 0
      2. n = text.length(),  m = pattern.length();
      3. 在 i < n的情况下:
        1. pattern[j] == text[i]:
          1. 假如j == m - 1,这时候找到全匹配, 我们可以return这时候串的开头index:   i - m + 1;
          2. 否则我们进行 i++, j++,继续尝试匹配当前串的下一个字符
        2. pattern[j] != text[i]:
          1. 假如 j > 0, 那么我们设置 j = table[j - 1], 对j进行回溯
          2. 否则我们进行 i++, 没有任何匹配,我们要从text的下一个位置开始重新匹配。
  2. 求出 KMP的next数组,根据next数组匹配。这里这个next数组其实是一个NFA,可以在匹配失败的时候用来进行回溯。利用这个next数组也可以进行匹配。 这里主要参考了Princeton的lecture notes和code,里面有些步骤还不是很懂,先步骤记录一下。
    1. Preprocess:
      1. 设置m = pattern.length(), int[] next = new int[m]
      2. 设置j = -1 在i = 0; i < m; i++的情况下:
        1. i == 0,  设置next[i] = -1
        2. 假如 pattern.charAt(i) != pattern.charAt(j), 设置next[i] = j
        3. 否则 pattern.charAt(i) == pattern.charAt(j), next[i] = next[j]
        4. while j >= 0并且 pattern.charAt(i) != pattern.charAt(j), 我们对j进行迭代回溯,  j = next[j]
        5. j++
    2. Search:
      1. 定义int i, j。  m = pattern.length(), n = text.length()
      2. 初始条件i = 0, j = 0, 当 i < n && j < m时:
        1. while j >= 0 并且 text.charAt(i) != pattern.charAt(j)时, 对j进行迭代回溯, j = next[j]
        2. j++
      3. 循环结束后,假如j == m, return i - m 为第一个match pattern的子串头index
      4. 否则return -1

Java:

 

KMP - using prefix table:

Time Complexity - O(m + n), Space Complexity - O(m)

public class Solution {
    public int strStr(String haystack, String needle) {
        if (haystack == null || needle == null || haystack.length() < needle.length()) {
            return -1;
        }
        if (needle.equals("")) {
            return 0;
        }
        int[] prefixTable = preProcess(needle);
        int i = 0, j = 0;
        int m = needle.length(), n = haystack.length();
        while (i < n) {                                         // KMP Search 
            if (haystack.charAt(i) == needle.charAt(j)) {
                if (j == m - 1) {
                    return i - m + 1;
                }
                i++;
                j++;
            } else if (j > 0) {
                j = prefixTable[j - 1];
            } else {
                i++;
            }
        }
        return -1;
    }
    
    private int[] preProcess(String pattern) {  // KMP: building prefix table
        int m = pattern.length();
        int[] prefixTable = new int[m];
        int i = 1, j = 0;
        while (i < m) {
            if (pattern.charAt(i) == pattern.charAt(j)) {
                prefixTable[i] = j + 1;
                i++;
                j++;
            } else if (j > 0) {
                j = prefixTable[j - 1];
            } else {
                prefixTable[i] = 0;
                i++;
            }
        }
        return prefixTable;
    }
}

 

KMP - build KMP NFA using next array:

public class Solution {
    public int strStr(String haystack, String needle) {
        if (haystack == null || needle == null || haystack.length() < needle.length()) {
            return -1;
        }
        if (needle.equals("")) {
            return 0;
        }
        int[] next = preprocess(needle);
        int m = needle.length(), n = haystack.length();
        int i, j;
        for (i = 0, j = 0; i < haystack.length() && j < needle.length(); i++) {
            while (j >= 0 && haystack.charAt(i) != needle.charAt(j)) {
                j = next[j];
            }
            j++;
        }
        if (j == m) {
            return i - m;
        }
        return -1;
    }
    
    private int[] preprocess(String pattern) {  // KMP build next array
        int m = pattern.length();
        int next[] = new int[m];
        int j = -1;
        for (int i = 0; i < m; i++) {
            if (i == 0) {
                next[i] = -1;
            } else if (pattern.charAt(i) != pattern.charAt(j)) {
                next[i] = j;
            } else {
                next[i] = next[j];
            }
            while (j >= 0 && pattern.charAt(i) != pattern.charAt(j)) {   // here we continue backtracking j
                j = next[j];
            }
            j++;
        }
        return next;
    }
}

 

 

Reference:

http://www.cs.cmu.edu/~ab/211/lectures/

http://www.cs.cmu.edu/~ab/211/lectures/Lecture%2018%20-%20String%20Matching-KMP.ppt

https://www.youtube.com/watch?v=5i7oKodCRJo

http://algs4.cs.princeton.edu/53substring/

http://programmerspatch.blogspot.com/2013/02/ukkonens-suffix-tree-algorithm.html

http://web.stanford.edu/~mjkay/gusfield.pdf

http://www.cs.cmu.edu/~avrim/451/lectures/lect1121.pdf

https://www.topcoder.com/community/data-science/data-science-tutorials/introduction-to-string-searching-algorithms/

http://www.geeksforgeeks.org/searching-for-patterns-set-2-kmp-algorithm/

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm

http://www.inf.fh-flensburg.de/lang/algorithmen/pattern/kmpen.htm

https://web.stanford.edu/class/cs97si/10-string-algorithms.pdf

https://www.cs.princeton.edu/~rs/AlgsDS07/21PatternMatching.pdf

http://www-igm.univ-mlv.fr/~lecroq/string/node8.html

http://www.ics.uci.edu/~eppstein/161/960227.html

http://jakeboxer.com/blog/2009/12/13/the-knuth-morris-pratt-algorithm-in-my-own-words/ 

转载于:https://www.cnblogs.com/yrbbest/p/4435074.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值