显然这形成了一个树形结构。考虑这样一种贪心:按照曲目顺序,每次取消其父亲的预留,并选择当前可选择(保证其子树有合法选择且满足预留)的最大值,然后对其子树预留出大于等于他的一些值。这个做法显然是正确的。问题在于怎么达到预留的效果。
离散化后建一棵权值线段树。线段树每个节点维护这段权值其右边(即大于该权值)至少有多少个权值可以选择。预留一棵子树时,我们无法知道大于等于根的那些权值如何选择,但小于根的权值的右边的可选权值减少的个数是可以知道的。于是对于权值小于根的部分,直接把可选权值个数减掉子树大小-1。查询时在线段树上二分,看左儿子区间的右边至少有多少个权值可以选择,若该值小于需要预留的子树大小,那么就无法把子树全部塞到右边了,于是向左儿子递归,否则向右儿子递归,直到叶子节点。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 500010 int n,a[N],cnt[N],size[N],b[N],fa[N]; double k,eps=1E-7; int tree[N<<2],L[N<<2],R[N<<2],lazy[N<<2],ans[N]; void up(int k){tree[k]=min(tree[k<<1],tree[k<<1|1]);} void build(int k,int l,int r) { L[k]=l,R[k]=r; if (l==r) {tree[k]=cnt[l+1];return;} int mid=l+r>>1; build(k<<1,l,mid); build(k<<1|1,mid+1,r); up(k); } void down(int k) { tree[k<<1]+=lazy[k],tree[k<<1|1]+=lazy[k]; lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k]; lazy[k]=0; } void modify(int k,int l,int r,int x) { if (L[k]==l&&R[k]==r){tree[k]+=x,lazy[k]+=x;return;} if (lazy[k]) down(k); int mid=L[k]+R[k]>>1; if (r<=mid) modify(k<<1,l,r,x); else if (l>mid) modify(k<<1|1,l,r,x); else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x); up(k); } int query(int k,int x) { if (L[k]==R[k]) return L[k]; if (lazy[k]) down(k); int mid=L[k]+R[k]>>1,ans; if (tree[k<<1]<x) ans=query(k<<1,x); else ans=query(k<<1|1,x); up(k);return ans; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj5249.in","r",stdin); freopen("bzoj5249.out","w",stdout); const char LL[]="%I64d"; #else const char LL[]="%lld"; #endif n=read();cin>>k; for (int i=1;i<=n;i++) b[i]=a[i]=read(); sort(b+1,b+n+1); int t=unique(b+1,b+n+1)-b-1; for (int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+t+1,a[i])-b; sort(a+1,a+n+1); for (int i=1;i<=n;i++) if (a[i]!=a[i-1]) cnt[a[i]]=n-i+1; build(1,0,t); for (int i=1;i<=n;i++) fa[i]=(double)i/k+eps,size[i]=1; for (int i=n;i>=1;i--) size[fa[i]]+=size[i]; for (int i=1;i<=n;i++) { if (fa[i]!=fa[i-1]) modify(1,0,ans[fa[i]]-1,size[fa[i]]-1); ans[i]=query(1,size[i]); modify(1,0,ans[i]-1,-size[i]); } for (int i=1;i<=n;i++) printf("%d ",b[ans[i]]); return 0; }