BZOJ5249 九省联考2018IIIDX(线段树+贪心)

  显然这形成了一个树形结构。考虑这样一种贪心:按照曲目顺序,每次取消其父亲的预留,并选择当前可选择(保证其子树有合法选择且满足预留)的最大值,然后对其子树预留出大于等于他的一些值。这个做法显然是正确的。问题在于怎么达到预留的效果。

  离散化后建一棵权值线段树。线段树每个节点维护这段权值其右边(即大于该权值)至少有多少个权值可以选择。预留一棵子树时,我们无法知道大于等于根的那些权值如何选择,但小于根的权值的右边的可选权值减少的个数是可以知道的。于是对于权值小于根的部分,直接把可选权值个数减掉子树大小-1。查询时在线段树上二分,看左儿子区间的右边至少有多少个权值可以选择,若该值小于需要预留的子树大小,那么就无法把子树全部塞到右边了,于是向左儿子递归,否则向右儿子递归,直到叶子节点。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
#define N 500010
int n,a[N],cnt[N],size[N],b[N],fa[N];
double k,eps=1E-7;
int tree[N<<2],L[N<<2],R[N<<2],lazy[N<<2],ans[N];
void up(int k){tree[k]=min(tree[k<<1],tree[k<<1|1]);}
void build(int k,int l,int r)
{
    L[k]=l,R[k]=r;
    if (l==r) {tree[k]=cnt[l+1];return;}
    int mid=l+r>>1;
    build(k<<1,l,mid);
    build(k<<1|1,mid+1,r);
    up(k);
}
void down(int k) 
{
    tree[k<<1]+=lazy[k],tree[k<<1|1]+=lazy[k];
    lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k];
    lazy[k]=0;
}
void modify(int k,int l,int r,int x)
{
    if (L[k]==l&&R[k]==r){tree[k]+=x,lazy[k]+=x;return;}
    if (lazy[k]) down(k);
    int mid=L[k]+R[k]>>1;
    if (r<=mid) modify(k<<1,l,r,x);
    else if (l>mid) modify(k<<1|1,l,r,x);
    else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x);
    up(k);
}
int query(int k,int x)
{
    if (L[k]==R[k]) return L[k];
    if (lazy[k]) down(k);
    int mid=L[k]+R[k]>>1,ans;
    if (tree[k<<1]<x) ans=query(k<<1,x);
    else ans=query(k<<1|1,x);
    up(k);return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj5249.in","r",stdin);
    freopen("bzoj5249.out","w",stdout);
    const char LL[]="%I64d";
#else
    const char LL[]="%lld";
#endif
    n=read();cin>>k;
    for (int i=1;i<=n;i++) b[i]=a[i]=read();
    sort(b+1,b+n+1);
    int t=unique(b+1,b+n+1)-b-1;
    for (int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+t+1,a[i])-b;
    sort(a+1,a+n+1);
    for (int i=1;i<=n;i++) if (a[i]!=a[i-1]) cnt[a[i]]=n-i+1;
    build(1,0,t);
    for (int i=1;i<=n;i++) fa[i]=(double)i/k+eps,size[i]=1;
    for (int i=n;i>=1;i--) size[fa[i]]+=size[i];
    for (int i=1;i<=n;i++)
    {
        if (fa[i]!=fa[i-1]) modify(1,0,ans[fa[i]]-1,size[fa[i]]-1);
        ans[i]=query(1,size[i]);
        modify(1,0,ans[i]-1,-size[i]);
    }
    for (int i=1;i<=n;i++) printf("%d ",b[ans[i]]);
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9429991.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值