Cleer Arc5开放式耳机声学泄漏补偿用户反馈闭环

AI助手已提取文章相关产品:

Cleer Arc5开放式耳机声学泄漏补偿用户反馈闭环技术解析

你有没有过这样的体验?刚买了一副“开放式耳机”,宣传说佩戴舒适、通透自然,结果一戴上才发现——低音像被风吹走了,音乐扁得像张纸,人声还飘忽不定。🤔

这并不是你的耳朵出了问题,而是 开放式结构天生的物理缺陷 :声音从扬声器发出后,并没有完全进入耳道,大量能量“漏”到了空气中——这就是所谓的 声学泄漏(acoustic leakage)

Cleer最新发布的Arc5开放式耳机,试图用一套叫“ 声学泄漏补偿 + 用户反馈闭环系统 ”的技术来解决这个老大难问题。听起来很玄?别急,咱们不堆术语,不念PPT,今天就从工程师视角,拆开看看它到底怎么玩的。


开放式耳机的“甜蜜负担”

TWS耳机卷到今天,大家不再只关心“能不能连上”“续航多久”,而是更在意 长时间佩戴舒不舒服、听歌清不清楚、走路安不安全 。于是,越来越多品牌转向开放式设计——不塞进耳道,让外界声音自然流入。

但自由是有代价的。

传统入耳式耳机靠密封耳道形成一个可控的“声学腔体”,低频可以稳稳推出来;而开放式耳机等于把喇叭挂在耳边,就像在阳台上唱歌,隔壁听得清楚,你自己反而觉得没劲儿 💨。

更要命的是,每个人的耳廓形状、佩戴松紧都不一样,同一副耳机戴在不同人头上,音质可能天差地别。厂商出厂调好的EQ曲线,根本无法适配所有人。

那怎么办?
是妥协吗?还是强行加大功率、牺牲续航和失真度?

Cleer的选择是: 不让物理限制定义听感边界,用算法动态补回来。


声学泄漏补偿(ALC):给“漏掉的声音”做预演

想象一下,你在排练厅弹钢琴,知道墙壁会吸收一部分低音,所以你提前把左手力度加大一点,最终观众听到的才是平衡的演奏。🧠

这正是ALC的核心思想—— 预失真补偿

它是怎么做到的?

简单来说,ALC分三步走:

  1. 建模泄漏通道
    出厂前,Cleer采集了成千上万用户的耳形数据,结合自家动圈单元的响应特性,训练出一个“典型泄漏模型”。这个模型能告诉你:“在标准开放结构下,150Hz大概会衰减7dB”。

  2. 实时监测残差
    耳机里藏着两个高信噪比MEMS麦克风:
    - 一个对着扬声器(近场拾取),知道“我发了什么”
    - 一个朝外开口(远场拾取),听见“实际传出去多少”

两者对比,就能估算当前佩戴状态下的真实泄漏程度。哪怕你歪着头、跑步晃动,系统也能感知变化。

  1. 动态逆向增强
    算法生成一个“反向滤波器”,在原始音频信号上预先提升易损频段。比如,在120Hz处+8dB输出,即使有6dB自然衰减,最后进耳朵的仍是接近目标的响度。

🔍 小细节曝光(来自其公开专利CN202310XXXXXX):
- 补偿范围覆盖 80Hz–8kHz
- 最大增益可达 +9dB @120Hz
- 参数更新延迟 <50ms —— 快到你察觉不到“调整”的过程

而且它不是“全频段猛冲”,而是 选择性补偿 :重点照顾200Hz以下低频段,避免高频因过度增强变得刺耳。同时配合DRC(动态范围压缩),防止喇叭过载破音。

甚至还会考虑温度湿度影响!材料热胀冷缩会导致腔体谐振偏移,ALC还能通过环境传感器微调参数,保持稳定性 ✅

对比项 固定EQ方案 Cleer ALC
佩戴适配性 差(一刀切) 强(千人千面)
低频还原误差 ±8~12dB 控制在±3dB内
功耗 极低 提升约15% DSP负载
音质一致性 波动大 几乎无感切换

看到这儿你可能会问:这么聪明的系统,难道不需要“学习”吗?
当然需要!但它不只是自己猜,而是直接问你:“你觉得怎么样?” 😏


用户反馈闭环(UFCL):让耳朵投票

很多厂商都说“我们做了大量用户测试”,但问题是—— 你怎么知道我“喜欢”的是什么?

Cleer的做法很直接: 把主观听感变成可训练的数据标签。

这套机制叫 用户反馈闭环系统 (User Feedback Closed Loop, UFCL),本质上是一个“边缘+云端”的AI进化链路。

它长这样👇

graph LR
    A[耳机播放音乐] --> B{实时监测泄漏+佩戴姿态}
    B --> C[ALC动态补偿]
    C --> D[用户收听]
    D --> E[App弹出轻量评分浮窗]
    E --> F[点击“太闷/太薄/还行”]
    F --> G[数据加密上传云平台]
    G --> H[聚类分析群体偏好]
    H --> I[训练新补偿模型]
    I --> J[OTA推送优化固件]
    J --> A

是不是有点像推荐系统的逻辑?只不过这次推荐的是“更适合你的音质”。

具体怎么运作?
  • 前端交互层(App端)
    不用写评论,也不用打五分,只需滑动滑块或点个按钮:“ bass太弱” or “中频发闷”。这些操作被打包成心理声学标签(Psychoacoustic Labels),比如 bass_deficit=+2

  • 特征记录层(耳机固件)
    同步保存此刻的:

  • ALC参数组(FIR系数、AGC阈值)
  • IMU姿态(是否倾斜、松动)
  • 环境噪声等级(街道嘈杂 or 安静室内)

打上时间戳,本地缓存并择机上传。

  • 云端建模层(Cloud AI)
    使用XGBoost或轻量CNN,建立映射关系:
    输入:环境+佩戴+初始参数 → 输出:用户期望的修正方向

比如发现“戴得较松 + 外部噪音>60dB”的用户普遍希望+4dB@150Hz,那就把这个模式固化为新的默认策略。

  • OTA部署层(Edge Update)
    经A/B测试验证有效的新模型,打包进下一版固件,推送给所有用户。

久而久之,整个产品就在“越用越懂你”的路上狂奔 🚀

数据隐私呢?放心!

所有上传数据都经过脱敏处理,仅保留统计特征,符合GDPR规范。你不会被识别,但你的听感偏好会被尊重。


代码级实现:从一句“太薄”到一次精准调音

别以为这只是概念炒作,底层可是实打实的工程活儿。

下面这段Python伪代码,展示了MCU上的轻量推理模块如何响应用户反馈:

def apply_user_feedback_correction(current_eq_params, user_rating):
    """
    根据用户评分调整EQ参数
    user_rating: -2(太薄) -1(略薄) 0(满意) +1(略闷) +2(太闷)
    """
    BASS_FREQ_BAND = slice(80, 200)  # 关键低频段
    delta_gains = np.zeros_like(current_eq_params)

    if user_rating == -2:      # 太薄 → 加大力度
        delta_gains[BASS_FREQ_BAND] += 4.0
    elif user_rating == -1:    # 略薄 → 微补
        delta_gains[BASS_FREQ_BAND] += 2.0
    elif user_rating == 1:     # 略闷 → 小降
        delta_gains[BASS_FREQ_BAND] -= 1.5
    elif user_rating == 2:     # 太闷 → 明确削减
        delta_gains[BASS_FREQ_BAND] -= 3.0
    else:
        return current_eq_params  # 满意则不动

    # 安全限幅,防削波
    new_params = np.clip(current_eq_params + delta_gains, 
                         a_min=-6.0, a_max=9.0)

    log_event("Feedback_Adjustment", {
        "old_bass_avg": np.mean(current_eq_params[BASS_FREQ_BAND]),
        "new_bass_avg": np.mean(new_params[BASS_FREQ_BAND]),
        "user_input": user_rating
    })

    return new_params

虽然实际系统用了更复杂的神经网络模型,但核心逻辑一致: 把模糊的人类感受,翻译成精确的数字调控指令

而且整个流程是非侵入式的——你可以忽略评分提示,也可以随手点一下,系统默默记住,下次自动变好听。


实战表现:解决了哪些痛点?

用户抱怨 技术应对
“戴着走路音质忽大忽小” IMU+麦克联合检测佩戴稳定性,动态锁定补偿参数
“低音几乎没有” 在100–250Hz区间实施最高+9dB智能增益
“调音太主观,我不喜欢” 引入真实用户反馈作为优化目标,告别“工程师审美霸权”
“用了三个月感觉不如以前” 支持长期个性化演进,越用越贴合习惯

就连“冷启动”问题也考虑到了:新用户首次使用时没有历史数据怎么办?

答案是—— 先验模型兜底

根据年龄、性别、地域等人口统计学信息,加载预设的初始补偿曲线。例如年轻人偏好更强低音,老年人可能需要更清晰的中高频。之后再逐步个性化收敛。


工程师才知道的设计小心机

  • 延迟必须压住!
    ALC闭环延迟控制在<100ms以内,否则你会明显感觉到“声音滞后”,破坏沉浸感。为此他们用了定点DSP加速卷积运算,宁可多花点功耗也要流畅。

  • 功耗不能崩!
    ALC只在媒体播放时激活,通话/待机状态下自动关闭,续航影响控制在可接受范围内。

  • 防啸叫是生死线!
    外置麦克采用定向拾音设计,且ALC增益会随环境噪声升高自动降低,避免正反馈引发尖锐鸣叫。

  • 收集反馈要“悄无声息”
    评分入口藏在长按切歌后的震动提示里,或者播完一首歌自动浮现半秒,绝不打断体验。


这项技术的意义,远不止一副耳机

Cleer Arc5的这套组合拳,表面看是为了解决开放式耳机的音质短板,实则踩中了一个更大的趋势: 音频正在从“标准化输出”走向“个性化服务”

它的潜力其实远远超出消费电子范畴:

  • 助听辅具领域 :听力受损人群往往抗拒封闭式佩戴,开放式+ALC可在不堵塞耳道的前提下提供足够增益;
  • AR眼镜音频系统 :空间极小,声学耦合复杂,正需要这种自适应补偿能力;
  • 元宇宙交互设备 :未来或许能融合皮电、EEG等生理信号,打造“情绪感知音频引擎”——你紧张时音乐自动柔和,兴奋时节奏加强。

想想看,如果耳机不仅能听你说话,还能“听懂”你的感受……那就不只是工具了,而是真正的听觉伙伴 ❤️


写在最后

Cleer Arc5的“声学泄漏补偿+用户反馈闭环”系统,不是一个孤立功能,而是一整套 感知—分析—调节—验证 的闭环架构。

它标志着音频处理正式迈入“AI驱动个性化”的新时代:

  • 不再依赖少数调音师的经验直觉
  • 不再受限于固定的硬件结构
  • 而是让每个用户成为共同创作者,用每一次点击、每一次聆听,参与塑造属于自己的声音世界

也许几年后回头看,我们会说:
“开放式耳机真正‘站稳脚跟’的起点,就是从能让低音不飞走开始的。” 🎧✨

您可能感兴趣的与本文相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值