http://acm.hdu.edu.cn/showproblem.php?pid=1028
dp[i][j]表示数值为i,然后最小拆分的那个数是j的时候的总和。
1 = 1
2 = 1 + 1 、 2 = 2
3 = 1 + 1 + 1、 3 = 2 + 1、 3 = 3
那么可以分两类,
1、最小拆分数是j,这个时候dp[i][j] = dp[i - j][j]。加一个数j,使得它变成i
2、最小拆分数严格大于j,这个时候就没得加上j了。就是dp[i][j + 1]
所以dp[i][j] = dp[i - j][j] + dp[i][j + 1]; (加上dp[i][j + 1]是前缀和的意思)
dp[2][1]就是2中的两条等式,然后dp[3][1] = dp[2][1] + dp[3][2]
其中dp[2][1]中有两条式子,所以每个式子加上一个1上去,就是3中前两条式子。
然后dp[3][2]其实就是3 = 3这条,因为3的式子不存在最小拆分数是2的情况。
如果要输出最小拆分数是k的时候有多少种解。
就是dp[val][k] - dp[val][k + 1];
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #define IOS ios::sync_with_stdio(false) using namespace std; #define inf (0x3f3f3f3f) typedef long long int LL; #include <iostream> #include <sstream> #include <vector> #include <set> #include <map> #include <queue> #include <string> const int maxn = 120 + 20; int dp[maxn][maxn]; const int N = 120; void init() { for (int i = 1; i <= N; ++i) { dp[i][i] = 1; for (int j = i - 1; j >= 1; --j) { dp[i][j] = dp[i - j][j] + dp[i][j + 1]; } } // cout << dp[4][1] - dp[4][2] << endl; } int main() { #ifdef local freopen("data.txt","r",stdin); #endif init(); int n; while (cin >> n) { cout << dp[n][1] << endl; } return 0; }
这题居然可以相当于完全背包,整数划分的题目(可以相同)可以转化为完全背包。
dp[i]表示产生这个数字所拥有的合法方案数。
而加了一维,dp[i][j]这样的话,可以用来判断一些特殊条件,例如相差的值不能大于多少这样子。
http://www.cnblogs.com/liuweimingcprogram/p/7010170.html
http://acm.hdu.edu.cn/showproblem.php?pid=2709 (正常dpMLE)
隐含着dp[i][j]
表示前i个物品,组成j的方案数。只能是前i个物品