二叉树的遍历(分析思路和根据两个遍历条件写出遍历图形):
(D为访问根节点,L为访问左子树,R为访问右子树)
1.二叉树的前序遍历的方式为DLR( 即先访问根,然后左子树,然后右子树)
中序遍历为LDR
后序遍历为LRD
(图 1.0)
前序遍历的方式为先访问根节点A
然后访问左子树B,D,G
(图 1.1)
然后按照DLR的方式访问,访问根节点B
然后访问左子树D,G:
(图 1.2)
然后按照DLR的方式访问,访问根节点D
最后访问G节点
之后访问A的右子树
(图 1.3)
最后前序遍历的结果为ABDGCEF
中序遍历为: DGBAECF
后序遍历为 GDBEFCA
(图 1.4)
现在反过来:知道他的两个遍历结果(其中一个必须为中序遍历:用于确定他每次递归的根节点)
现在讲一种情况:
前序遍历的为ABDGCEF
中序遍历为: DGBAECF
前序遍历的第一个肯定为根节点,所以A为根节点 (图 1.5)
遍历结果可表示为A(BDG)(CEF)
(DGB)A(ECF)
根据中序遍历A的左边DGB为左子树,右边ECF为右子树
根据前序遍历:左子树BDG的根节点为B,,再根据中序遍历知道DG为B的左子树
A(B(DG))(CEF)
((DG)B)A(ECF)
(图 1.5)
根据中序遍历DG的根节点为D,再根据中序遍历,G在D的右边
所以左边的结构为
(图 1.6)
右边和左边的分析方式一致
A(B(DG))(CEF)
((DG)B)A(ECF)
根据前序遍历:右子树的根节点为C
根据中序遍历:E为C的左子树,G为C的右子树
所以最终的结果如图:1.4
已知中序遍历和后续遍历两个条件的分析思路也是一样的,同学们可以试一试、
、