工大计算机专业课,哈工大计算机系统_考研专业课.pdf

这门课程强调了计算机科学中的抽象思维与系统思维的结合,指出虽然抽象对于解决问题至关重要,但在遇到bug或程序缺陷时,理解底层实现细节同样重要。课程通过实例展示了程序中的整数和浮点数可能带来的问题,揭示了机器级数据表示的限制。课程旨在培养学生的计算机系统知识,以更好地分析和解决实际问题。
摘要由CSDN通过智能技术生成

课程概述

CS13104: 计算机系统导论

simple@, 新技术楼900室

第1讲, Sep. 3, 2018

1

本章内容提要

 课程主题

 五个事例

 可执行程序的生成与执行

 计算机系统层次模型

 本课程在CS/CE课程体系中的地位

 课程考核与学术诚信

哈尔滨工业大学-计算机科学与技术学院-计算机系统 2

回顾:计算机思维导论

 计算思维(抽象)

 从计算机学科中提炼出来的

一种“普适”思维方式

 面向所有人、所有领域

 无需深入了解计算机系统

 对计算机专业学生来说:必需,

但远远不够 !

 系统思维(具体)

计算之树 (“计算机思维”)

 从计算机角度去分析问题和

解决问题的方法

 首先取决于对计算机系统的

了解

哈尔滨工业大学-计算机科学与技术学院-计算机系统 3

课程Subject:抽象很好但别忘记具体实际!

 多数计算机科学/工程的课程都强调抽象

 抽象数据(类)型

 抽象是有局限的

 特别是在出现bug (程序缺陷-故障/错误)时

 需要理解底层实现的细节

本课程的一个重要论述:

Abstraction Is Good But Don’t

Forget Reality

抽象很好,但别忘记具体情况

哈尔滨工业大学-计算机科学与技术学院-计算机系统 4

事例1: 程序示例:test2

int未必是整数, float未必是实数

 例1: x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 = 1600000000

 50000 * 50000 ?? ( 231 =2,147,483,648 )

 例2: (x + y) + z = x + (y + z)?

 无符号/有符号Int: Yes!

 浮点数Float:

 (1e20 + -1e20) + 3.14 --> 3.14 理解这个问题需要知道:

 1e20 + (-1e20 + 3.14) --> ?? 0 机器级数据的表示范围

浮点数的表示与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值