网络流之P3254 圆桌问题

题目描述

假设有来自m 个不同单位的代表参加一次国际会议。每个单位的代表数分别为ri (i =1,2,……,m)。

会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐。

为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。试设计一个算法,给出满足要求的代表就餐方案。

对于给定的代表数和餐桌数以及餐桌容量,编程计算满足要求的代表就餐方案。

输入输出格式

输入格式:

 

第1 行有2 个正整数m 和n,m 表示单位数,n 表示餐桌数,1<=m<=150, 1<=n<=270。

第2 行有m 个正整数,分别表示每个单位的代表数。

第3 行有n 个正整数,分别表示每个餐桌的容量。

 

输出格式:

 

如果问题有解,第1 行输出1,否则输出0。接下来的m 行给出每个单位代表的就餐桌号。如果有多个满足要求的方案,只要输出1 个方案。

 

输入输出样例

输入样例#1:  复制
4 5
4 5 3 5
3 5 2 6 4
输出样例#1:  复制
1
1 2 4 5
1 2 3 4 5
2 4 5
1 2 3 4 5



圆桌问题

网络流,是一个匹配问题。
可以把求一个人员的分配,转化成一个网络流问题
转化:
这个题目是要求所有的人都可以合理的分配到每一个桌子,这个所谓的合理就是一个单位的不许坐在一起。
所以就建一个图,把每一个单位都和所有的桌子连一条权值为1的线,意思是这个单位只能分配一个人到这里。
然后每一个单位到源点连一根线这根线权值是这个单位的人,然后就是每一个桌子连一根线到汇点,线的权值就是桌子能做的人。

这就是建图,然后你会发现,如果我们要合理分配,那么就是从源点到汇点的最大流为所有单位人之和。
也就是源点连的每一条线的边权值。

建图之后就是一个dinic的板子。

然后就是一个一个路径的输出,这个路径的输出很简单,就是判断这条边(就是单位到桌子)的负边的权值是不是-1,
如果是,则说明这个单位有一个人坐在这里。

 

 

 

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#include <iostream>
#include <vector>
#define inf 0x3f3f3f3f
using namespace std;
const int  maxn = 1e5 + 10;
int s, t, n, m;
struct node
{
    int from, to, cap, flow;
    node(int from=0,int to=0,int cap=0,int flow=0):from(from),to(to),cap(cap),flow(flow){}
};
vector<node>e;
vector<int>G[maxn];
int level[maxn], iter[maxn], head[maxn];
void add(int u,int v,int c)
{
    e.push_back(node(u, v, c, 0));
    e.push_back(node(v, u, 0, 0));
    int len = e.size();
    G[u].push_back(len - 2);
    G[v].push_back(len - 1);
}

void bfs(int s)
{
    memset(level, -1, sizeof(level));
    queue<int>que;
    que.push(s);
    level[s] = 0;
    while(!que.empty())
    {
        int u = que.front(); que.pop();
        for(int i=0;i<G[u].size();i++)
        {
            node &now = e[G[u][i]];
            if(level[now.to]<0&&now.cap>now.flow)
            {
                level[now.to] = level[u] + 1;
                que.push(now.to);
            }
        }
    }
}

int dfs(int u,int v,int f)
{
    if (u == v) return f;
    for(int &i=iter[u];i<G[u].size();i++)
    {
        node &now = e[G[u][i]];
        if(now.cap>now.flow&&level[now.to]>level[u])
        {
            int d = dfs(now.to, v, min(f, now.cap - now.flow));
            if(d>0)
            {
                now.flow += d;
                e[G[u][i] ^ 1].flow -= d;
                return d;
            }
        }
    }
    return 0;
}
int sum = 0;
bool dinic()
{
    int flow = 0;
    while(1)
    {
        bfs(s);
        if (level[t] < 0) return flow==sum;
        memset(iter, 0, sizeof(iter));
        int f;
        while ((f = dfs(s, t, inf)) > 0) flow += f;
    }
}
vector<int>to[maxn];
int main()
{
    cin >> m >> n;
    s = 0, t = m + n + 1;
    for(int i=1;i<=m;i++)
    {
        int x;
        cin >> x;
        sum += x;
        add(s, i, x);
    }
    for(int i=1;i<=n;i++)
    {
        int x;
        cin >> x;
        add(i + m, t, x);
    }
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        {
            add(i, j + m, 1);
        }
    }
    int ans = dinic();
    printf("%d\n", ans);
    if(ans)
    for(int i=1;i<=m;i++)
    {
        for(int j=0;j<G[i].size();j++)
        {
            node now = e[G[i][j] ^ 1];
            if (now.flow == -1) printf("%d ", e[G[i][j]].to-m);
        }
        printf("\n");
    }
    return 0;
}

 



转载于:https://www.cnblogs.com/EchoZQN/p/10741451.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值