P3572 [POI2014]PTA-Little Bird

POI2014 PTA-LittleBird解析
本文介绍了一个关于小鸟跳跃路径优化的问题,通过使用单调队列维护DP来解决。问题中,小鸟从1跳到n,跳到比当前位置矮的位置不消耗体力,否则消耗一点体力。文章提供了详细的解题思路及代码实现。

P3572 [POI2014]PTA-Little Bird

一只鸟从1跳到n。从1开始,跳到比当前矮的不消耗体力,否则消耗一点体力,每次询问有一个步伐限制k,求每次最少耗费多少体力


很简短的题目哼。

首先对于一个点, 他的状态一定是由前 \(k\) 个转移过来的。 \(k\) 的长度在每组询问内一定, 想到用单调队列维护 \(dp\)

不过此时单调队列里的元素有两个关键字: 劳累度和高度, 因为跳到比这个点高的树需要花费恒为一点体力(这个很重要), 所以我们维护单调队列的时候可以以劳累度为第一关键字, 高度为第二关键字进行比较, 为多个关键字的单调队列

解释一下为什么体力花费恒为一点很重要。 这里运用了一点贪心的思想: 此题的高度对体力消耗没有影响, 只有高和矮两种说法。 只要我的劳累值比你小, 不管你的高度有多低, 我 $ + 1$ 一定 \(<=\) 你, 所以可以把高度作为第二关键字比较, 从而不影响结果

Code

教训: 多次调用简单函数会大大降低算法的效率, 开一波 \(O2\) 才没 \(T\)

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int RD(){
    int flag = 1, out = 0;char c = getchar();
    while(c < '0' || c > '9'){if(c == '-')flag = -1;c = getchar();}
    while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
    return flag * out;
    }
const int maxn = 1000019;
int len, num ,k;
int h[maxn];
int dp[maxn];
struct Que{
    int h, val, index;
    Que (int h, int val, int index): h(h), val(val), index(index){}
    Que(){};
    bool operator < (Que const &a)const{
        if(val != a.val)return val < a.val;
        return h > a.h;
        }
    }Q[maxn];
int head, tail;
void push_back(Que x){
    while(head <= tail && x < Q[tail])tail--;
    Q[++tail] = x;
    }
void check(int x){
    while(x - Q[head].index > k)head++;
    }
int get_min(){return Q[head].val;}
int main(){
    len = RD();
    for(int i = 1;i <= len;i++)h[i] = RD();
    num = RD();
    while(num--){
        k = RD();
        head = 1, tail = 0;Q[head] = Que(1e9 + 19, 0, 0);
        memset(dp, 0, sizeof(dp));
        for(int i = 1;i <= len;i++){
            check(i);
            if(h[i] < Q[head].h)dp[i] = get_min();
            else dp[i] = get_min() + 1;
            push_back(Que(h[i], dp[i], i));
            }
        printf("%d\n", dp[len]);
        }
    return 0;
    }

转载于:https://www.cnblogs.com/Tony-Double-Sky/p/9339048.html

三维建模技术借助先进的图像处理手段,将二维影像转化为立体空间数据。在多种实现路径中,双摄像头视觉方案与编码光投影技术具有代表性。前者通过布置两个成像单元从不同方位采集画面,依据视差原理与空间几何关系推算深度数据;后者则向目标表面投射特定光栅,通过解析光栅形变反推三维轮廓。相位偏移法作为光栅技术的重要分支,采用多步渐进式光场调制策略,通过记录连续相位变化获取亚像素级三维信息。同步采用的互补二进制编码机制,通过优化光强分布模式有效解决相位跳变问题,显著提升重建数据的连续性。 成像系统的参数标定是三维数据生成的基础环节,需通过专用算法确定镜头焦距、像主点坐标及光学畸变系数等核心参数。立体校正则依据双相机空间几何关系,对采集图像进行投影变换,使对应像点分布于同一水平扫描线上,大幅降低立体匹配复杂度。在光栅系统中,相位对齐技术通过建立像素级相位映射关系,将二维相位场转换为三维坐标;而在立体视觉中,视差分析通过比对双视图对应像素偏移量,构建深度映射矩阵。最终通过点云融合算法,将离散空间坐标整合为连续曲面模型,该技术体系在工业检测、数字娱乐及沉浸式交互等领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文围绕“风光制氢合成氨系统优化研究”展开,重点介绍了基于Matlab代码实现的并网与离网模式下风能、光能耦合制氢进而合成氨的系统容量配置与调度优化方法。研究涵盖可再生能源波动性、系统能量转换效率、设备容量规划及运行调度策略等关键问题,通过数学建模与优化算法(如智能优化、模型预测控制等)实现系统经济性与稳定性的平衡。文中多次提及“复现”字样,表明部分内容旨在还原已有研究成果,并提供完整的代码资源支持仿真验证。同时,文档列举了大量相关研究主题,形成一个涵盖电力系统、综合能源、状态估计、机器学习等多个方向的技术资源集合。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及工程技术人员,熟悉Matlab/Simulink环境者更佳;适合从事新能风光制氢合成氨系统优化研究(Matlab代码实现)源系统建模与优化研究的专业人士。; 使用场景及目标:①开展风光耦合制氢及合成氨系统的容量规划与运行调度研究;②复现已发表论文中的优化模型与算法;③构建综合能源系统仿真平台,提升科研效率与代码实践能力。; 其他说明:文档附带百度网盘链接,提供YALMIP工具包及其他完整资源下载,便于读者直接调用求解器进行优化计算,建议结合实际需求选择相应案例进行学习与拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值