B.寻找最大值

算法:

1.正向思维如果枚举区间求最值肯定TLE,数据量很大。

2.反向思维,枚举每个点的左右区间,虽然两个for循环,我感觉是平均是O(N)的时间复杂度,动态规划的思想,可以求出。

3.这题相当诡异,不能给dt数组清空赋值,坑了我一晚上加上午,还不知道为什么。

4.我的L[I]记录的是该点能往左到达的边界,R【i]是往右到达的边界。旭他们记录的是以该点向左能扩张的长度,R【i]类似。

View Code
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<vector>
#include<string>
#include<math.h>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const long long inf = -(1LL<<60);
int N;
long long dt[201000]; //输入数据 
long long sum[201000]; //静态,不需要修改,数组维护最长前缀和
long long L[201000];
long long R[201000];

int main( )
{
  while( scanf("%d",&N) != EOF)
  {
    memset(sum, 0, sizeof(sum));
    for(int i = 1; i <= N; i++)
    { 
      scanf("%I64d",&dt[i]);
      sum[i] = sum[i-1] + dt[i];
    }
    memset(L,0,sizeof(L));
    memset(R,0,sizeof(R));
    for(int i = 1; i <= N; i++)
    { 
         int j = i-1, len = 0;
         while(j >= 1){
               if( dt[i] > dt[j] ) break;
               else{
                   len += 1+L[j];
                   j = j-L[j]-1;     
               }        
         }
         L[i] = len;
    }
     
    for(int i = N; i >= 1; i--)
    { 
         int j = i+1, len = 0;
         while(j <= N ){
               if( dt[i] > dt[j] ) break;
               else{
                   len += 1+R[j];
                   j = j+R[j]+1;     
                   
               }        
         }
         R[i] = len;
    }
    long long maxn = inf;
    long long ans;
    for( int i = 1; i <= N; i++)
    {
        int l = i-L[i];
        int r = i+R[i];
        ans = (sum[r] - sum[l - 1]) * dt[i];
        if( ans > maxn )
            maxn = ans;
        
    }
    printf("%I64d\n",maxn); 
  }
  return 0;
}

 

View Code
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<vector>
#include<string>
#include<math.h>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const long long inf = (1LL<<60);
int N;
long long dt[301000]; //输入数据 
long long sum[301000]; //静态,不需要修改,数组维护最长前缀和
int L[301000];
int R[301000];

int main( )
{  
  while( scanf("%d",&N) != EOF)
  {  
    for(int i = 1; i <= N; i++)
    { 
      scanf("%I64d",&dt[i]);
      sum[i] = sum[i-1] + dt[i];
    }
    memset(L,0,sizeof(L));
    memset(R,0,sizeof(R));
    for(int i = 1; i <= N; i++)
    {  
        if( dt[i] == dt[i-1] && i != 1)
        {
           L[i] = L[i-1];
           continue;    
        }
        if( dt[i] > dt[i-1] || i == 1)
        {
            L[i] = i;    
        }
        else
        {  
           int j = i;
           while( --j )
           { 
              int x = L[j];
              if( dt[x - 1] < dt[i] )
              {
                L[i] = x;     
                break;     
              } 
           }
        }  
    }
    for( int i = N; i >= 1; i--)
    {   
        if( dt[i] == dt[i+1] && i != N)
        {
           R[i] = R[i+1];
           continue;    
        }  
        if( dt[i] > dt[i+1] || i == N)
        {
            R[i] = i;    
        }
        else
        {  
           int j = i;
           while( ++j <= N )
           {  
              int x = R[j];
              if( dt[x + 1] < dt[i] )
              {
                R[i] = x;     
                break;     
              } 
           }
        }  
    }
    long long maxn = -inf;
    for( int i = 1; i <= N; i++)
    {
        long long ans = (sum[R[i]] - sum[L[i] - 1]) * dt[i];
        if( ans > maxn )
            maxn = ans;

    }
    printf("%I64d\n",maxn);
  }
  return 0;
}

转载于:https://www.cnblogs.com/tangcong/archive/2012/08/18/2645085.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值