深夜敲模板_1——快速幂 && 矩阵的快速幂

快速幂:

///a^n%m
int quickpow(int a,int n,int m){
    int ans=1;
    while(n){
        if(n&1) ans = (ans*a)%m;
        a = (a*a)%m;
        n>>=1;
    }
}

矩阵的快速幂:

///用结构体保存一个矩阵
struct Matrix{
    int mat[N][N];
    ///两个矩阵乘法
    Matrix operator *(const Matrix& a) const{
        Matrix c;
        memset(c.mat,0,sizeof(c.mat));
        for(int i=0;i<N;i++){
            for(j=0;j<N;j++){
                for(int k=0;k<N;k++){
                    c.mat[i][j]+=mat[i][k]*a.mat[k][j];
                }
            }
        }
        return c;
    }
    ///矩阵的幂,用二分的思想写,就是快速幂算法
    Matrix operator ^(int n) const{
        Matrix c;
        ///初始化为单位矩阵
        for(int i=0;i<N;i++){
            for(int j=0;j<N;j++){
                c.mat[i][j]=(i==j);
            }
        }
        ///就是快速幂
        Matrix a = *this;///毕竟直接敲的模板,没运行就写上去了,发现这里少了一个*号
        while(n)
        {
            if(n%2) c=c*a;
            a=a*a;
            n=n>>1;
        }
        return c;
    }
};


转载于:https://www.cnblogs.com/hqwhqwhq/p/4555885.html

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值