本文参考给妹子讲python https://zhuanlan.zhihu.com/p/34673397
NumPy是Numerical Python的简写,是高性能科学计算和数据分析的基础包,他是许多高级工具的构建基础。
他的核心功能是:
1.多维向量的描述和快速高效计算能力,让数组和矩阵的使用更加自然;
2.大量实用的数学函数,支撑复杂的线性代数、随机数生成以及傅里叶变换函数
3.具备数据的磁盘读写工具
对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷的多。
这是因为NumPy能够直接对数组和矩阵进行操作,可以省略很多循环语句,
其众多的数学函数也会让编写代码的工作轻松许多。
同时底层算法在设计时有着优异的的性能,NumPy中数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,如嵌套list。
example1:用python对象的list来创建ndarray对象
import numpy as np data = [1,2.11,4,59] arr = np.array(data) print(arr) print(type(arr)) [ 1. 2.11 4. 59. ] <class 'numpy.ndarray'>
当然ndarray对象也可以转换成list
import numpy as np arr = np.arange(8) L = arr.tolist() print(type(L)) print(L) <class 'list'> [0, 1, 2, 3, 4, 5, 6, 7]
example2:用嵌套列表来创建多维矩阵
import numpy as np data = [[1,2,3,4],[5,6,7,8.2]] arr = np.array(data) print(arr) print(arr.ndim) print(arr.shape) print(arr.dtype) print(type(arr)) [[ 1. 2. 3. 4. ] [ 5. 6. 7. 8.2]] 2 (2, 4) float64 <class 'numpy.ndarray'> #ndim就是数组的维数, #data.ndim = len(data.shape)
example3:对已有的ndarray数组进行数据类型的显式转换
import numpy as np arr1 = np.array([1,2,3,4], dtype=np.float64) arr2 = np.array([1,2,3,4], dtype=np.int32) arr3 = arr2.astype(np.float64) print(arr1) print(arr2) print(arr3) [ 1. 2. 3. 4.] [1 2 3 4] [ 1. 2. 3. 4.] #我们看到arr2在创建ndarray数组时,显式指定了元素类型为int32,后续又通过astype进行数据类型的显式转换,创建了新的数组arr3,其数据类型为float64浮点型。
example4:创建全0、全1、没有具体值的矩阵
import numpy as np arr_0 = np.zeros(8) #全0矩阵 arr_1 = np.ones((3, 8)) # 3行8列全1矩阵 arr_e = np.empty((2,3,2)) # 维度为2,3,2的矩阵 print(arr_0) print(arr_1) print(arr_e) [ 0. 0. 0. 0. 0. 0. 0. 0.] [[ 1. 1. 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1. 1. 1.]] [[[ 2.05931344e-316 1.87072344e-316] [ 1.85828998e-316 1.98442969e-316] [ 1.85755284e-316 1.70134311e-316]] [[ 1.71304417e-316 2.37875336e-316] [ 1.84704347e-316 1.70132375e-316] [ 2.46176627e-316 2.34552329e-316]]]
除此之外,之前我们讲过python内置函数中有一个range函数,np中也有一个类似的函数实现该功能
import numpy as np arr1 = np.arange(8) print(arr1) print(type(arr1)) [0 1 2 3 4 5 6 7] <class 'numpy.ndarray'> import numpy as np arr2 = np.arange(0,11,2,dtype=float) print(arr2) [ 0. 2. 4. 6. 8. 10.]
还有一种网格数据的生成方法:即指定起始点和终止点(包含),以及网格点的个数
import numpy as np arr = np.linspace(0,80,5) print(arr) [ 0. 20. 40. 60. 80.]
ndarray数据的维度转换与最简单的标量运算:
import numpy as np a = np.arange(24).reshape((6,4)) print(a) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] [16 17 18 19] [20 21 22 23]] # 然后将其展平,即将其转化为一个24项的一维数组 import numpy as np a = np.arange(24).reshape((6,4)) print(a.flatten()) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] #还有一种维度转换的使用场景,如,将之前的6×4的二维数组,转化为3×8的二维数组 import numpy as np a = np.arange(24).reshape((6,4)) a.resize((3,8)) print(a) [[ 0 1 2 3 4 5 6 7] [ 8 9 10 11 12 13 14 15] [16 17 18 19 20 21 22 23]] #转置 import numpy as np a = np.arange(24).reshape((6,4)) print(a) print(a.transpose()) # 或者缩写成 a.T [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] [16 17 18 19] [20 21 22 23]] [[ 0 4 8 12 16 20] [ 1 5 9 13 17 21] [ 2 6 10 14 18 22] [ 3 7 11 15 19 23]]
数组的组合
# 首先是水平的组合 import numpy as np a = np.arange(6).reshape((2,3)) b = a * 2 print(a) print(b) print(np.hstack((a,b))) [[0 1 2] [3 4 5]] [[ 0 2 4] [ 6 8 10]] [[ 0 1 2 0 2 4] [ 3 4 5 6 8 10]] # 再来看看垂直组合 import numpy as np a = np.arange(6).reshape((2,3)) b = a * 2 print(a) print(b) print(np.vstack((a,b))) [[0 1 2] [3 4 5]] [[ 0 2 4] [ 6 8 10]] [[ 0 1 2] [ 3 4 5] [ 0 2 4] [ 6 8 10]]
最后我们来看看数组的标量计算
其实下面介绍的数组的标量计算功能用传统的基本数组List类型肯定是都能实现的,但是NumPy提供的最主要的便利之一就是,我们可以像操作原子数据类型一样对NumPy对象进行操作:不需要显式循环就可以对它们进行加、减、乘等运算,避免了显式循环的使用,使得代码更加清晰。同时,NumPy底层是用C语言实现的,因此代码运行的也更快。
import numpy as np arr = np.array([[1,2,3],[4,5,6]],dtype=np.float64) print(arr + 1) print(arr ** 2) print(1/arr) [[ 2. 3. 4.] [ 5. 6. 7.]] [[ 1. 4. 9.] [ 16. 25. 36.]] [[ 1. 0.5 0.33333333] [ 0.25 0.2 0.16666667]] # 另外还有数组与数组之间的运算,这里暂时只谈论维数相同的数组运算 import numpy as np arr = np.array([[1,2,3],[4,5,6]],dtype=np.float64) print(arr+arr) print(arr*arr) [[ 2. 4. 6.] [ 8. 10. 12.]] [[ 1. 4. 9.] [ 16. 25. 36.]] #对整个向量运用基本数学表达式 import numpy as np arr = np.arange(8) print(np.sin(arr)) [ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427 -0.2794155 0.6569866 ]