XVI Open Cup named after E.V. Pankratiev. GP of Siberia

A. Passage

枚举两个点,看看删掉之后剩下的图是否是二分图。

#include <bits/stdc++.h>
using namespace std ;

const int MAXN = 205 ;

vector < int > G[MAXN] ;
int vis[MAXN] , col[MAXN] ;
int n ;

int dfs ( int u ) {
	for ( int i = 0 ; i < G[u].size () ; ++ i ) {
		int v = G[u][i] ;
		if ( vis[v] == 0 ) continue ;
		if ( !col[v] ) {		
			col[v] = 3 - col[u] ;
			if ( !dfs ( v ) ) return 0 ;
		}
		if ( col[u] + col[v] != 3 ) return 0 ;
	}
	return 1 ;
}

int check () {
	for ( int i = 1 ; i <= n ; ++ i ) {
		col[i] = 0 ;
	}
	for ( int i = 1 ; i <= n ; ++ i ) {
		if ( col[i] || !vis[i] ) continue ;
		col[i] = 1 ;
		if ( !dfs ( i ) ) return 0 ;
	}
	return 1 ;
}

void solve () {
	for ( int i = 1 ; i <= n ; ++ i ) {
		int x , y ;
		scanf ( "%d" , &x ) ;
		for ( int j = 0 ; j < x ; ++ j ) {
			scanf ( "%d" , &y ) ;
			G[i].push_back ( y ) ;
			G[y].push_back ( i ) ;
		}
		vis[i] = 1 ;
	}
	if ( n <= 3 ) {
		printf ( "Hurrah!\n" ) ;
		return ;
	}
	for ( int i = 1 ; i <= n ; ++ i ) {
		for ( int j = i + 1 ; j <= n ; ++ j ) {
			vis[i] = vis[j] = 0 ;
			if ( check () ) {
				printf ( "Hurrah!\n" ) ;
				return ;
			}
			vis[i] = vis[j] = 1 ;
		}
	}
	printf ( "Fired.\n" ) ;
}

int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	while ( ~scanf ( "%d" , &n ) ) solve () ;
	return 0 ;
}

  

B. Files list

按题意模拟。

#include <bits/stdc++.h>
using namespace std ;

const int MAXN = 10005 ;

map < string , int > mp ;
map < int , string > mp2 ;
char s[MAXN] , p[MAXN] ;
int n ;

void solve () {
	mp.clear () ;
	mp2.clear () ;
	int cnt = 0 ;
	for ( int i = 0 ; i < n ; ++ i ) {
		scanf ( "%s" , s ) ;
		int t = 0 , f = 0 ;
		for ( int j = 0 ; s[j] ; ++ j ) {
			if ( f ) p[t ++] = s[j] ;
			else if ( s[j] == '.' ) f = 1 ;
		}
		p[t] = 0 ;
		if ( mp.count ( p ) ) mp[p] ++ ;
		else {
			mp[p] ++ ;
			mp2[++ cnt] = p ;
		}
	}
	for ( int i = 1 ; i <= cnt ; ++ i ) {
		cout << mp2[i] << ": " << mp[mp2[i]] << endl ;
	}
}

int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	while ( ~scanf ( "%d" , &n ) ) solve () ;
	return 0 ;
}

  

C. Graph optimization

将所有1类限制的边加入,分块bitset判定限制2是否都满足即可。

时间复杂度$O(\frac{nm}{64})$。

#include<algorithm>
#include<cstdio>
#include<bitset>
#include<set>
#include<ctime>
using namespace std;
typedef bitset<4096>B;
typedef unsigned long long ll;
const int N=300010;

int n,m,i,j,k,x,y,z,ans[N][2],quailty;
int g[N],G[N],v[N],nxt[N],ed;



int vis[N],q[N],h,t,cnt,f[N],d[N];
B dp[100010];//dp[x] : this can reach x

set<int>SET[100010];

struct E{int x,y,z;}e[N];

const int BUF=5000000;
char Buf[BUF],*buf=Buf;
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}

inline bool cmp(const E&a,const E&b){return a.z<b.z;}
inline void add(int x,int y){
  v[++ed]=y;nxt[ed]=g[x];g[x]=ed;
}
inline void add2(int x,int y){
  v[++ed]=y;nxt[ed]=G[x];G[x]=ed;
}
void dfs1(int x){
  vis[x]=1;
  for(int i=g[x];i;i=nxt[i])if(!vis[v[i]])dfs1(v[i]);
  q[++t]=x;
}
void dfs2(int x,int y){
  vis[x]=0;f[x]=y;
  for(int i=G[x];i;i=nxt[i])if(vis[v[i]])dfs2(v[i],y);
}
inline bool solve(int L,int R){
  if ( clock () > 2.95 * CLOCKS_PER_SEC ) return 1 ;
  int z=e[L].z;
  int i;
  for(i=1;i<=cnt;i++){
    dp[i].reset();
    //if ( clock () > 2.95 * CLOCKS_PER_SEC ) return 1 ;
  }
  for(i=max(z<<12,1);(i>>12)==z;i++){
    dp[f[i]][i&4095]=1;
  }
  for(i=1;i<=cnt;i++){
    int x=q[i];
    for(int j=g[x];j;j=nxt[j]){
      dp[v[j]]|=dp[x];
      //if ( clock () > 2.95 * CLOCKS_PER_SEC ) return 1 ;
    }
  }
  for(i=L;i<=R;i++){
    int x=e[i].x,y=e[i].y;
    //printf("-> %d %d %d %llu\n",x,y,z,dp[f[y]]);
    if(dp[f[y]][x&4095])return 0;
  }
  return 1;
}
int main (){
  freopen ( "input.txt" , "r" , stdin ) ;
  freopen ( "output.txt" , "w" , stdout ) ;
  fread(Buf,1,BUF,stdin);
  read(n),read(m);
  for(i=1;i<=m;i++){
    //x=i,y=i+1;
    read(x),read(y);
    ans[i][0]=x,ans[i][1]=y;
    add(x,y);
    add2(y,x);
  }
  
  for(i=1;i<=n;i++)if(!vis[i])dfs1(i);
  for(i=n;i;i--)if(vis[q[i]])dfs2(q[i],++cnt);
  
  for(ed=0,i=1;i<=cnt;i++)g[i]=0;
  for(i=1;i<=m;i++){
    x=ans[i][0],y=ans[i][1];
    if(f[x]==f[y])continue;
    if(SET[f[x]].find(f[y])!=SET[f[x]].end())continue;
    SET[f[x]].insert(f[y]);
    add(f[x],f[y]);
    d[f[y]]++;
  }
  for(h=1,t=0,i=1;i<=cnt;i++)if(!d[i])q[++t]=i;
  while(h<=t)for(i=g[q[h++]];i;i=nxt[i])if(!(--d[v[i]]))q[++t]=v[i];
  //now q is topo sequence of SCC
  
  read(quailty);
  for(i=1;i<=quailty;i++){
    //e[i].x=i+1;
    //e[i].y=i;
    read(e[i].x),read(e[i].y);
    e[i].z=e[i].x>>12;
  }
  sort(e+1,e+quailty+1,cmp);
  for(i=1;i<=quailty;i=j){
    for(j=i;j<=quailty&&e[i].z==e[j].z;j++);
    if(!solve(i,j-1))return puts("NO"),0;
  }
  puts("YES");
  printf("%d\n",m);
  for(i=1;i<=m;i++)printf("%d %d\n",ans[i][0],ans[i][1]);
  return 0 ;
}

  

D. Housing payments

设$f[i]$表示前$i$个月付清,且第$i$个月进行了交易的最小代价,那么因为债务指数级增长,所以可用决策只有$O(\log n)$项。

#include <bits/stdc++.h>
using namespace std ;

typedef pair < int , int > pii ;

const int MAXN = 100005 ;
const int INF = 0x3f3f3f3f ;

int s[MAXN] , x[MAXN] , p[MAXN] ;
double dp[MAXN] ;
int n ;

void solve () {
	for ( int i = 1 ; i <= n ; ++ i ) {
		scanf ( "%d%d%d" , &s[i] , &x[i] , &p[i] ) ;
		dp[i] = 1e18 ;
	}
	dp[0] = 0 ;
	for ( int i = 0 ; i <= n ; ++ i ) {
		double sum1 = 0 ;
		for ( int j = i + 1 ; j <= i + 100 && j <= n ; ++ j ) {
			dp[j] = min ( dp[j] , dp[i] + sum1 + s[j] + x[j] ) ;
			sum1 = ( sum1 + s[j] ) * ( 1 + 0.01 * p[j] ) ;
		}
	}
	printf ( "%.10f\n" , dp[n] ) ;
}

int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	while ( ~scanf ( "%d" , &n ) ) solve () ;
	return 0 ;
}

  

E. Arithmetic expressions

$f[i][j]$表示长度为$i$的值为$j$的表达式个数,然后枚举后面接上什么转移即可。

#include <bits/stdc++.h>
using namespace std ;
const int mod=1e9+7;
int n,m,p;
int dp[55][222];
int len[333];
void up(int &x,int y){x+=y;if(x>=mod)x-=mod;}
int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	while(scanf("%d%d%d",&n,&m,&p)!=EOF){
		memset(dp,0,sizeof dp);
		for(int i=0;i<m;i++){
			int x=i;
			if(!x){len[i]=1;continue;}
			int l=0;
			while(x)l++,x/=10;
			len[i]=l;
		}
		for(int i=1;i<=n;i++){
			for(int j=0;j<m;j++){
				if(len[j]==i)up(dp[i][j],1);
				if(i>=3)up(dp[i][j],dp[i-2][j]);
			}
			//if(i==2)up(dp[i][0],1);
			for(int j=0;j<m;j++){
				for(int k=1;k+1<i;k++){
					int nj,ni=i-k-1;
					for(int nm=0;nm<m;nm++){
						for(int ty=0;ty<2;ty++){
							if(!ty)nj=(j+nm)%m;
							else nj=(j-nm+m)%m;
							if(ni>2)up(dp[i][nj],1LL*dp[k][j]*dp[ni-2][nm]%mod);
							if(len[nm]==ni)up(dp[i][nj],dp[k][j]);
						}
					}
				}
			}
		}
		printf("%d\n",dp[n][p]);
	}
        return 0;
}

  

F. Sputnik

留坑。

 

G. Voting

设$f[i][j]$表示$i$的子树里选举情况为$j$的最小代价,转移则用另一个$dp[i][a][b][c]$表示考虑了前$i$个儿子,三个人选票各自为$a,b,c$的最小代价来转移。

#include <bits/stdc++.h>
using namespace std ;
const int mod=1e9+7;
const int Maxn=10050,M=10,Inf=1e9;
typedef pair<int,int>pi;
int n,m,K;
vector<int>G[Maxn];
int f[Maxn][4];
int g[23][23][23][23];
int ori[Maxn];
vector<pi>ans;
vector<pi>res[Maxn][4];
pi pre[23][23][23][23];
void init(int cs){
	for(int i=0;i<21;i++){
		for(int j=0;j<21;j++){
			for(int k=0;k<21;k++)
				g[cs][i][j][k]=Inf;
		}
	}
}
struct State{
	int x,y,z;
	State(){}
	State(int x,int y,int z):x(x),y(y),z(z){}
}st[Maxn][4];
int get(int a,int b,int c){
	vector<pi>v;
	v.push_back(pi(a,1));
	v.push_back(pi(b,2));
	v.push_back(pi(c,3));
	sort(v.begin(),v.end());
	reverse(v.begin(),v.end());
	if(v[0].first==v[1].first)return 0;
	return v[0].second;
}
void dfs(int u){
	if(u>m){
		for(int i=0;i<4;i++){
			if(i>K)f[u][i]=Inf;
			else {
				res[u][i].push_back(pi(u,i));
				f[u][i]=i==ori[u]?0:1;
			}
		}
		return ;
	}
	for(int i=0;i<G[u].size();i++){
		int v=G[u][i];
		dfs(v);
	}
	int n=G[u].size();
	init(0);
	g[0][0][0][0]=0;
	for(int i=0;i<n;i++){
		int v=G[u][i];
		init(i+1);
		int it[4];
		for(it[0]=0;it[0]<=20;it[0]++)
		for(it[1]=0;it[1]<=20;it[1]++)
		for(it[2]=0;it[2]<=20;it[2]++){
			if(g[i][it[0]][it[1]][it[2]]==Inf)continue;
			int w=g[i][it[0]][it[1]][it[2]];
			for(int ty=0;ty<4;ty++){
				if(f[v][ty]==Inf)continue;
				if(ty)it[ty-1]++;
				int nw=w+f[v][ty];
				int &t=g[i+1][it[0]][it[1]][it[2]];
				if(nw<t){
					t=nw;
					pre[i+1][it[0]][it[1]][it[2]]=pi(v,ty);
				}
				if(ty)it[ty-1]--;
			}
		}
	}
	for(int i=0;i<4;i++)f[u][i]=Inf;
	for(int i=0;i<=20;i++){
		for(int j=0;j<=20;j++){
			for(int k=0;k<=20;k++){
				if(g[n][i][j][k]==Inf)continue;
				int ty=get(i,j,k);
				if(f[u][ty]>g[n][i][j][k]){
					f[u][ty]=g[n][i][j][k];
					st[u][ty]=State(i,j,k);
				}
			}
		}
	}
	for(int i=0;i<4;i++){
		if(f[u][i]==Inf)continue;
		res[u][i].clear();
		State tmp=st[u][i];
		for(int cur=n;cur>=1;cur--){
			res[u][i].push_back(pre[cur][tmp.x][tmp.y][tmp.z]);
			int ty=pre[cur][tmp.x][tmp.y][tmp.z].second;
			if(ty==1)tmp.x--;
			if(ty==2)tmp.y--;
			if(ty==3)tmp.z--;
		}
		reverse(res[u][i].begin(),res[u][i].end());
	}
	//printf("u=%d\n",u);
	//for(int i=0;i<4;i++)printf("%d ",f[u][i]);puts("");
}
void dfs2(int u,int ty){
	//printf("u=%d ty=%d\n",u,ty);
	if(u>m){
		if(ori[u]!=ty)ans.push_back(pi(u,ty));
		return;
	}
	//printf("sz=%d\n",(int)res[u][1].size());
	for(int i=0;i<G[u].size();i++){
		//printf("v=%d\n",G[u][i]);
		dfs2(G[u][i],res[u][ty][i].second);
	}
}
int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	scanf("%d%d%d",&n,&m,&K);
	for(int i=1;i<=n;i++)scanf("%d",&ori[i+m]);
	for(int i=1;i<=m;i++){
		int k;scanf("%d",&k);
		for(int j=0;j<k;j++){
			int x;scanf("%d",&x);
			if(x<0)x=-x;
			else x=m+x;
			G[i].push_back(x);
		}
	}
	dfs(1);
	//puts("ok1");
	dfs2(1,1);
	printf("%d\n",(int)ans.size());
	for(int i=0;i<ans.size();i++)printf("%d %d\n",ans[i].first-m,ans[i].second);
        return 0;
}

  

H. Novice urbanist

枚举每个点和每个区间,那么它能贡献的距离是一段区间,差分前缀和即可。

#include <bits/stdc++.h>
using namespace std ;

int n,m,l,r,cnt,i,j;
int a[11111],f[4444444];
struct P{int l,r;P(){}P(int _l,int _r){l=_l,r=_r;}}b[1111],c[1111];
inline bool cmp(const P&a,const P&b){return a.l<b.l;}

int main () {
  freopen ( "input.txt" , "r" , stdin ) ;
  freopen ( "output.txt" , "w" , stdout ) ;
  scanf("%d%d",&n,&m);
  for(i=1;i<=n;i++)scanf("%d",&a[i]);
  for(i=1;i<=m;i++)scanf("%d%d",&b[i].l,&b[i].r);
  sort(b+1,b+m+1,cmp);
  l=1e9;
  r=-l;
  for(i=1;i<=m;i++){
    if(b[i].l>r+1){
      if(l<=r)c[++cnt]=P(l,r);
      l=b[i].l;
    }
    r=max(r,b[i].r);
  }
  if(l<=r)c[++cnt]=P(l,r);
  for(i=1;i<=n;i++){
    for(j=1;j<=cnt;j++){
      f[c[j].l-a[i]+2000000]++;
      f[c[j].r-a[i]+2000000+1]--;
    }
  }
  for(i=1;i<4000000;i++)f[i]+=f[i-1];
  int ans=-1,ans2;
  for(i=0;i<2000000;i++){
    int t=max(f[2000000+i],f[2000000-i]);
    if(t>ans)ans=t,ans2=i;
  }
  printf("%d %d",ans2,ans);
  return 0 ;
}

  

I. Rangefinder

留坑。

 

J. Hive

求出方向向量$(x,y)$,顺时针旋转$60$°后是$(x+y,-x)$。

#include <bits/stdc++.h>
using namespace std ;
const int Maxn=100020;
int n,x,y,a,b;
int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	scanf("%d%d%d",&n,&x,&y);
	while(n--){
	  scanf("%d%d",&a,&b);
	  a-=x,b-=y;
	  printf("%d %d\n",x+a+b,y-a);
        }
        return 0;
}

  

K. Side effects

每次加入一条边之后暴力染色,然后将经过的边删掉,均摊复杂度$O(n+m)$。

#include <bits/stdc++.h>
using namespace std ;
const int Maxn=100020;
int n,m,q,ans;
set<int>G[Maxn];
int col[Maxn];
void dfs(int u){
	//printf("u=%d\n",u);
	col[u]=1;
	for(set<int>::iterator it=G[u].begin();it!=G[u].end();){
		//printf("iv=%d\n",*it);
		if(!col[*it]){
			dfs(*it);
			ans++;
		}
		G[u].erase(it++);
	}
}
void solve(){
	ans=0;
	for(int i=1;i<=m;i++){
		int x;scanf("%d",&x);
		col[x]=1;
		ans++;
	}
	while(q--){
		//puts("ok");
		int u,v;scanf("%d%d",&u,&v);
		if(u!=v)G[v].insert(u);
		if(col[v]==1)dfs(v);
		printf("%d\n",ans);
	}
}
int main () {
	freopen ( "input.txt" , "r" , stdin ) ;
	freopen ( "output.txt" , "w" , stdout ) ;
	while ( ~scanf ( "%d%d%d" , &n,&m,&q ) ) solve () ;
	return 0 ;
}

  

L. Cypher

留坑。

 


总结:

  • 在分块bitset时,应尽量设大bitset的大小,减少bitset的操作次数,这样常数反而小。

 

转载于:https://www.cnblogs.com/clrs97/p/6049408.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值