POJ 3680 Intervals

Intervals

Time Limit: 5000ms
Memory Limit: 65536KB
This problem will be judged on  PKU. Original ID: 3680
64-bit integer IO format: %lld      Java class name: Main
 

You are given N weighted open intervals. The ith interval covers (aibi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.

 

Input

The first line of input is the number of test case.The first line of each test case contains two integers, N and K (1 ≤ K ≤ N ≤ 200).The next N line each contain three integers aibiwi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals. There is a blank line before each test case.

 

Output

For each test case output the maximum total weights in a separate line.

 

Sample Input

4

3 1
1 2 2
2 3 4
3 4 8

3 1
1 3 2
2 3 4
3 4 8

3 1
1 100000 100000
1 2 3
100 200 300

3 2
1 100000 100000
1 150 301
100 200 300

Sample Output

14
12
100000
100301

Source

 
解题:离散化+费用流
 
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cmath>
  5 #include <algorithm>
  6 #include <climits>
  7 #include <vector>
  8 #include <queue>
  9 #include <cstdlib>
 10 #include <string>
 11 #include <set>
 12 #include <stack>
 13 #define LL long long
 14 #define INF 0x3f3f3f3f
 15 using namespace std;
 16 const int maxn = 1000;
 17 struct arc{
 18     int v,w,f,next;
 19     arc(int x = 0,int y = 0,int z = 0,int nxt = 0){
 20         v = x;
 21         w = y;
 22         f = z;
 23         next = nxt;
 24     }
 25 };
 26 arc e[10000];
 27 int head[maxn],d[maxn],p[maxn],tot;
 28 int n,k,S,T,lisan[maxn],cnt,x[maxn],y[maxn],sc[maxn];
 29 bool in[maxn];
 30 queue<int>q;
 31 void add(int u,int v,int w,int f){
 32     e[tot] = arc(v,w,f,head[u]);
 33     head[u] = tot++;
 34     e[tot] = arc(u,-w,0,head[v]);
 35     head[v] = tot++;
 36 }
 37 bool spfa(){
 38     for(int i = 0; i <= T; i++){
 39         d[i] = INF;
 40         in[i] = false;
 41         p[i] = -1;
 42     }
 43     while(!q.empty()) q.pop();
 44     d[S] = 0;
 45     in[S] = true;
 46     q.push(S);
 47     while(!q.empty()){
 48         int u = q.front();
 49         q.pop();
 50         in[u] = false;
 51         for(int i = head[u]; ~i; i = e[i].next){
 52             if(e[i].f > 0 && d[e[i].v] > d[u] + e[i].w){
 53                 d[e[i].v] = d[u] + e[i].w;
 54                 //cout<<"end:"<<e[i].v<<endl;
 55                 p[e[i].v] = i;
 56                 if(!in[e[i].v]){
 57                     in[e[i].v] = true;
 58                     q.push(e[i].v);
 59                 }
 60             }
 61         }
 62     }
 63     return p[T] > -1;
 64 }
 65 int solve(){
 66     int tmp = 0,minV;
 67     while(spfa()){
 68         minV = INF;
 69         for(int i = p[T]; ~i; i = p[e[i^1].v])
 70             minV = min(minV,e[i].f);
 71         for(int i = p[T]; ~i; i = p[e[i^1].v]){
 72             tmp += minV*e[i].w;
 73             e[i].f -= minV;
 74             e[i^1].f += minV;
 75         }
 76         //cout<<"tmp:"<<tmp<<endl;
 77     }
 78     return tmp;
 79 }
 80 int main(){
 81     int t;
 82     scanf("%d",&t);
 83     while(t--){
 84         scanf("%d %d",&n,&k);
 85         memset(head,-1,sizeof(head));
 86         cnt = tot = 0;
 87         //cout<<"n:"<<n<<endl;
 88         for(int i = 0; i < n; i++){
 89             scanf("%d %d %d",x+i,y+i,sc+i);
 90             lisan[cnt++] = x[i];
 91             lisan[cnt++] = y[i];
 92         }
 93         sort(lisan,lisan+cnt);
 94         int cnt1 = 1;
 95         for(int i = 1; i < cnt; i++)
 96             if(lisan[cnt1-1] != lisan[i]) lisan[cnt1++] = lisan[i];
 97         cnt = cnt1;
 98         S = 0;
 99         T = cnt;
100         //cout<<"n:"<<n<<endl;
101         for(int i = 0; i < n; i++){
102             int tx = lower_bound(lisan,lisan+cnt,x[i])-lisan;
103             int ty = lower_bound(lisan,lisan+cnt,y[i])-lisan;
104             //cout<<tx<<" "<<ty<<" ---"<<endl;
105             add(tx,ty,-sc[i],1);
106             add(tx,ty,0,k);
107         }
108         for(int i = 0; i < cnt; i++) add(i,i+1,0,k);
109         printf("%d\n",-solve());
110     }
111     return 0;
112 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/3975398.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值