题目:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
思路:动态规划,对于数组的前 i (i>=1)个数的连续子向量和的最大值为F(i) = Max(F(i-1)+array[i], array[i])
1 import java.util.ArrayList; 2 public class Solution { 3 public int FindGreatestSumOfSubArray(int[] array) { 4 //用于记录前i个数的最大和 5 ArrayList<Integer> candidateResults = new ArrayList<Integer>(); 6 int maxSum = 0; 7 for(int i=0; i<array.length;i++){ 8 int expectedSum = maxSum + array[i]; 9 //如果当前的array[i]使得maxSum变大了(或者不变),就加上array[i] 10 //否则,以array[i]为起点重新计算maxSum 11 if(expectedSum>=array[i]){ 12 maxSum += array[i]; 13 }else{ 14 maxSum = array[i]; 15 } 16 candidateResults.add(maxSum); 17 } 18 int result = Integer.MIN_VALUE; 19 for(Integer num : candidateResults){ 20 if(result<num){ 21 result = num; 22 } 23 } 24 return result; 25 26 27 } 28 }