A.Elephant
题意:大象每次能移动1,2,3,4,5 步,问移动x步至少要多少次,贪心思想答案即(x+4)/5
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
int main(){
int x;
cin>>x;
cout<<(x+4)/5<<endl;
}
B.Chocolate
题意:给你一个长为n只含0 1的序列,将这个序列分开,使每一小组恰好只含有一个1,问你有多少种分法
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
int main(){
int n;
int a[105];
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
int j=0,k;
for(int i=1;i<=n;i++)
if(a[i]==1){
j=i;
break;
}
for(int i=n;i>=1;i--){
if(a[i]==1){
k=i;
break;
}
}
if(j==0){
cout<<0<<endl;
return 0;
}
ll ans=1;
int sum=0;
for(int i=j;i<=k;i++){
if(a[i]==0){
sum++;
}
else {
ans*=(sum+1);
sum=0;
}
}
cout<<ans<<endl;
}
C.Watering flowers
题意:已知n(n<=2000)朵花的坐标,和两个喷头的坐标,每个喷头的喷洒范围为以喷头为圆心的一个圆,两个喷头的喷洒半径可自由设定,分别为r1,r2,现在要使两个喷头能够浇到所有的花,问你r1^2+r2^2的最小值,答案必须为整数
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=2005;
struct P{
ll d;
ll x,y;
}p[maxn];
ll x[maxn],y[maxn];
bool cmp(P a,P b){
return a.d<b.d;
}
int main(){
int n;
scanf("%d",&n);
ll x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
for(int i=1;i<=n;i++)
cin>>x[i]>>y[i];
for(int i=1;i<=n;i++){
p[i].d=(x[i]-x1)*(x[i]-x1)+(y[i]-y1)*(y[i]-y1);
p[i].x=x[i];p[i].y=y[i];
}
sort(p+1,p+1+n,cmp);
ll ans=1e18;
for(int i=0;i<=n;i++){
ll sum=0;
while(i!=n&&p[i].d==p[i+1].d)
i++;
for(int j=i+1;j<=n;j++){
sum=max(sum,(p[j].x-x2)*(p[j].x-x2)+(p[j].y-y2)*(p[j].y-y2));
//cout<<j<<(p[j].x-x2)*(p[j].x-x2)+(p[j].y-y2)*(p[j].y-y2)<<endl;
}
ans=min(ans,sum+p[i].d);
}
cout<<ans<<endl;
}
D. Polyine
题意:已知三个点的坐标,现在需要用若干条线段将其串起来,要求线段不能有交点且平行于坐标轴问你至少需要多少条线段,如图所示
这题wa了好几发,需要分清情况
首先只需要一条线段的情况:三个点横(纵)坐标都相等
两条线段的情况:有两个点的横(纵)坐标相等,且另外一个点的纵(横)坐标在其他两个点外面
其他的情况都是三个点
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
int main(){
ll x1,y1,x2,y2,x3,y3;
cin>>x1>>y1>>x2>>y2>>x3>>y3;
if((x3-x1)*(y2-y1)==(y3-y1)*(x2-x1)){
if(y2==y1||x2==x1)
cout<<1<<endl;
else cout<<3<<endl;
}
else if(x1==x2&&(y3>=max(y2,y1)||y3<=min(y2,y1)))
cout<<2<<endl;
else if(x2==x3&&(y1>=max(y2,y3)||y1<=min(y2,y3)))
cout<<2<<endl;
else if(x1==x3&&(y2>=max(y3,y1)||y2<=min(y3,y1)))
cout<<2<<endl;
else if(y1==y2&&(x3>=max(x2,x1)||x3<=min(x2,x1)))
cout<<2<<endl;
else if(y2==y3&&(x1>=max(x2,x3)||x1<=min(x2,x3)))
cout<<2<<endl;
else if(y1==y3&&(x2>=max(x3,x1)||x2<=min(x3,x1)))
cout<<2<<endl;
else cout<<3<<endl;
}
E.XOR and Favorite Number
题意:给你一个长度为n(n<=1e5)的序列a,(0<=a[i]<=1e6),已知q个询问和一个整数k,每个询问给你两个整数l,r(1<=l<=r<=n),问你有多少对i,j满足l<=i<=j<=r,且a[i]^a[i+1]^......^a[j]=k.
该问题满足莫队算法的条件,先处理出s[i]=a[1]^a[2]^......^a[i],则a[i]^a[i+1]^......^a[j]=s[j]^s[i-1];
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=3000005;
int n,m,k;
int L=1,R=0;
long long sum=0;
struct NODE{
int l,r,i;
}q[maxn];
int a[maxn],xo[maxn],kuai[maxn];
long long p[maxn],ans[maxn];
bool cmp(NODE a,NODE b){
if(kuai[a.l]==kuai[b.l])
return a.r<b.r;
return kuai[a.l]<kuai[b.l];
}
void add(int x){
sum+=p[xo[x]^k];
p[xo[x]]++;
}
void de(int x){
p[xo[x]]--;
sum-=p[xo[x]^k];
}
int main(){
p[0]=1;
cin>>n>>m>>k;
int cnt=sqrt(n);
for(int i=1;i<=n;i++){
cin>>a[i];
xo[i]=xo[i-1]^a[i];
kuai[i]=i/cnt;
}
for(int i=1;i<=m;i++){
cin>>q[i].l>>q[i].r;
q[i].i=i;
}
sort(q+1,q+1+m,cmp);
for(int i=1;i<=m;i++){
while(q[i].l>L){
de(L-1);
L++;
}
while(q[i].l<L){
L--;
add(L-1);
}
while(q[i].r>R){
R++;
add(R);
}
while(q[i].r<R){
de(R);
R--;
}
ans[q[i].i]=sum;
}
for(int i=1;i<=m;i++)
cout<<ans[i]<<endl;
}