GC回收和IDispose接口

本文探讨了dotnet中GC机制的局限性及其对非托管资源的影响,并介绍了一种通过实现IDisposable接口和使用Dispose模式来确保资源正确释放的方法。
  1. 关于GC
    donet的GC机制有两个问题:首先GC并不能释放所有资源,它更不能释放非托管资源。其次,GC也不是实时的,所有GC存在不确定性。

2.为了解决这个问题donet提供了析构函数

通常我们应该这样写程序:

public class TestClass : System.IDisposable

{

           public void Dispose()//供程序员显式调用的Dispose方法

      {

         Dispose(true);//调用带参数的Dispose方法,释放托管和非托管资源

         System.GC.SuppressFinalize(this);//手动调用了Dispose释放资源,那么析构函数就是不必要的了,这里阻止GC调用析构函数

      }

   protected void Dispose(bool disposing)

    //protectedDispose方法,保证不会被外部调用。

                //传入booldisposing以确定是否释放托管资源

            {

                 if (disposing)

                   {//在这里加入清理"托管资源"的代码,应该是xxx.Dispose();}

                 // 在这里加入清理"非托管资源"的代码

            }

        ~SampleClass() //GC调用的析构函数

           {Dispose(false);//释放非托管资源}

}
 这样一来,我们就像Delphi里调用Object.Free方法一样自然的调用Object.Dispose方法,而即使我们忘记了在合适的时候调用DisposeGC也会在释放对象的时候帮我们清理非托管资源的。GC所充当的角色只是一种保障手段,它应该充当这种角色,我们不能过分依赖它。

        实际上,在较大的模块退出时我们还应该及时地手动调用GC.Collect进行垃圾回收。

转载于:https://www.cnblogs.com/alecwen/archive/2007/01/19/624853.html

内容概要:本文介绍了一种基于蒙特卡洛模拟拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值