[轉]去除照片水印的方法(引用)

本文提供了一种使用Photoshop去除图片上水印的详细步骤。包括打开图片、选择水印区域、建立新图层、调整图层混合模式及反相等操作,并最终实现水印的有效去除。
原图

图解:去除照片水印的方法 - 迎春 -

1、用PS打开要去掉水印的图片。
2、按快捷键M 切换到选择工具。

图解:去除照片水印的方法 - 迎春 -

3、按着鼠标拖动选择要去掉的水印。
4、按快捷键 Ctrl+J 把第三步选择的水印建立一个新的图层。

图解:去除照片水印的方法 - 迎春 -

5、移动新建的图层可见水印图层。

图解:去除照片水印的方法 - 迎春 -

6、再选择图层的混保模式为颜色减淡。

图解:去除照片水印的方法 - 迎春 -

7、再按快捷键 Ctrl+i 把图层改为反相状态。

图解:去除照片水印的方法 - 迎春 -

8、移动水印图层对准底图上的水印即可完成。

图解:去除照片水印的方法 - 迎春 -

9、复制水印图层复盖底图的水印就可去除所有水印。

图解:去除照片水印的方法 - 迎春 -

10、复杂图片水印的去法也大同小异。

图解:去除照片水印的方法 - 迎春 -

去了水印的效果图。

图解:去除照片水印的方法 - 迎春 -
为了您的安全,请只打开来源可靠的网址
来自: http://hi.baidu.com/nesaynever/blog/item/3ab0551fbadac8c2a686697c.html

转载于:https://www.cnblogs.com/Athrun/archive/2010/06/20/1761313.html

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值