poj3208 Apocalypse Someday 题解报告

题目传送门

【题目大意】

包含连续的至少三个6的数称为“beastly number”,将这些数从小到大排序,求第n个数。

【思路分析】

 (注:以下加粗的“数”都代表“beastly number”)
设f[i][3]表示由i位数字构成的的个数,f[i][j](0≤j≤2)表示由i位数字构成的、开头已经有j个连续的6但不是的个数。注意,在计算f时允许前导0存在。
考虑第i位(最高位)是什么数字,容易得到转移方程:

$f[i][0]=9*(f[i-1][0]+f[i-1][1]+f[i-1][2])$
$f[i][1]=f[i-1][0]$
$f[i][2]=f[i-1][1]$
$f[i][3]=f[i-1][2]+10*f[i-1][3]$

经过这样的DP预处理之后,我们先通过f[i][3]确定第n小的的位数。然后按照“试填法”的思想,从左到右依次考虑每一位,同时记录当前末尾已经有几个连续的6。
从小到大枚举当前这一位填入的数字,通过预处理出来的f数组可以直接计算出后面几位有多少种填法可以得到,与n比较即可得出答案。

【代码实现】

 1 #include<cstdio>
 2 #include<algorithm>
 3 #define rg register
 4 #define ll long long
 5 #define go(i,a,b) for(rg ll i=a;i<=b;i++)
 6 #define back(i,a,b) for(rg ll i=a;i>=b;i--)
 7 using namespace std;
 8 ll f[21][4];
 9 int T,n,m;
10 void ready(){
11     f[0][0]=1;
12     go(i,0,19){
13         go(j,0,2){
14             f[i+1][j+1]+=f[i][j];
15             f[i+1][0]+=f[i][j]*9;
16         }
17         f[i+1][3]+=f[i][3]*10;
18     }
19     return;
20 }
21 int main(){
22     ready();
23     scanf("%d",&T);
24     while(T--){
25         scanf("%d",&n);
26         for(m=3;f[m][3]<n;m++);//计算位数m
27         for(rg int i=m,k=0;i;i--){
28         //试填第i位,末尾已经有k个6
29             go(j,0,9){//枚举填在第i位的数j
30                 ll mid=f[i-1][3];
31                 //求后面的i-1位有几种填法使得整个数满足要求
32                 if(j==6||k==3)
33                     go(l,max(3-k-(j==6),0),2)
34                         mid+=f[i-1][l];
35                 if(mid<n) n-=mid;
36                 //如果mid比n小,说明第n个满足要求的数的第i位应该比j大
37                 else{
38                     if(k<3){
39                         if(j==6) k++;
40                         else k=0;
41                     }
42                     printf("%lld",j);break;
43                 }
44             }
45         }
46         puts("");
47     }
48     return 0;
49 }
代码戳这里

转载于:https://www.cnblogs.com/THWZF/p/10991037.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值