Description
一个吉他手准备参加一场演出。他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都要改变一次音量。
在演出开始之前,他已经做好了一个列表,里面写着在每首歌开始之前他想要改变的音量是多少。
每一次改变音量,他可以选择调高也可以调低。
音量用一个整数描述。输入文件中给定整数beginLevel,代表吉他刚开始的音量,以及整数maxLevel,代表吉他的最大音量。
音量不能小于0也不能大于maxLevel。
输入文件中还给定了n个整数c1,c2,c3…..cn,表示在第i首歌开始之前吉他手想要改变的音量是多少。
吉他手想以最大的音量演奏最后一首歌,你的任务是找到这个最大音量是多少。
Input
第一行依次为三个整数:n, beginLevel, maxlevel。
第二行依次为n个整数:c1,c2,c3…..cn。
Output
输出演奏最后一首歌的最大音量。
如果吉他手无法避免音量低于0或者高于maxLevel,输出-1。
Sample Input
3 5 10
5 3 7
5 3 7
Sample Output
10
HINT
1<=N<=50,1<=Ci<=Maxlevel 1<=maxlevel<=1000
0<=beginlevel<=maxlevel
0<=beginlevel<=maxlevel
题解Here!
很显然的一个$DP$。
感觉很像背包。
每次只有可能加或者减。
那么不就好办了:
设$dp[i][j]$表示到第$i$首歌,能否达到$j$的音量。
转移方程长这个样:
$$dp[i][j]|=\left\{\begin{array}{}dp[i-1][j-val[i]]&j-val[i]\geq 0\\dp[i-1][j+val[i]]&j+val[i]\leq m\end{array}\right.$$
然后输出最大解就好。
我代码里用的是填表法,和上面那个不太一样,但是思路都是一样的。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 60
#define MAXM 1010
using namespace std;
int n,m,s;
int val[MAXN];
bool dp[MAXN][MAXM];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
void work(){
dp[0][s]=true;
for(int i=1;i<=n;i++)for(int j=0;j<=m;j++)if(dp[i-1][j]){
if(j+val[i]<=m)dp[i][j+val[i]]=true;
if(j-val[i]>=0)dp[i][j-val[i]]=true;
}
for(int i=m;i>=0;i--)if(dp[n][i]){printf("%d\n",i);return;}
printf("-1\n");
}
void init(){
n=read();s=read();m=read();
for(int i=1;i<=n;i++)val[i]=read();
}
int main(){
init();
work();
return 0;
}