BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

本文针对 HAOI2011 中的 Problemc 座位安排问题进行了解析,介绍了如何通过动态规划解决该问题,并给出了具体的实现代码。问题要求在给定部分人员座位的情况下,计算出所有合法的座位安排方案的数量。
摘要由CSDN通过智能技术生成

2302: [HAOI2011]Problem c

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 648  Solved: 355
[ Submit][ Status][ Discuss]

Description

给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,ai+1也被占据了的话就尝试ai+2,……,如果一直尝试到第n个都不行,该安排方案就不合法。然而有m个人的编号已经确定(他们或许贿赂了你的上司...),你只能安排剩下的人的编号,求有多少种合法的安排方案。由于答案可能很大,只需输出其除以M后的余数即可。

Input

第一行一个整数T,表示数据组数

对于每组数据,第一行有三个整数,分别表示n、m、M

若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi

Output

对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO

Sample Input

2
4 3 10
1 2 2 1 3 1
10 3 8882
7 9 2 9 5 10

Sample Output

YES 4
NO

HINT

100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n   且保证pi互不相同。


想了一种做法,根据每个人最后做的位置,因为右面对左面有影响倒着DP,但是不对

orz http://blog.csdn.net/fzhvampire/article/details/44954631

可以发现,我们并不关心每个人最后坐在那里,我们只关心给他的编号,也就是一开始把他放在那里让他往后找

仍然倒着DP,f[i][j]表示座位i..n放了j个人,然后枚举位置i放了几个人,乘上个组合数转移就行了

无解的情况就是一个位置i右面的座位数少于编号>=i的人数,用s[i]表示给定的编号>=i的人数

这样的话正着DP也可以,因为不依赖于最后坐的位置了

 

注意:j和k的枚举范围

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=305;
typedef long long ll;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int n,m,MOD,x,y,s[N];
ll f[N][N],c[N][N];
void dp(){
    c[0][0]=1;
    for(int i=1;i<=n;i++){
        c[i][0]=1;
        for(int j=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%MOD;
    }
    
    f[n+1][0]=1;
    for(int i=n;i>=1;i--)
        for(int j=0;j<=n-i+1-s[i];j++)
            for(int k=0;k<=j;k++) f[i][j]=(f[i][j]+f[i+1][j-k]*c[j][k])%MOD;
    printf("YES %lld\n",f[1][n-s[1]]);
}
int main(){
    //freopen("in.txt","r",stdin);
    int T=read();
    while(T--){
        int flag=1;
        memset(s,0,sizeof(s));
        memset(f,0,sizeof(f));
        n=read();m=read();MOD=read();
        for(int i=1;i<=m;i++) x=read(),y=read(),s[y]++;
        for(int i=n;i>=1;i--){
            s[i]+=s[i+1];
            if(s[i]>n-i+1) puts("NO"),flag=0;
        }
        if(flag) dp();
    }
}

 

 

 

 

 

 

转载于:https://www.cnblogs.com/candy99/p/6261658.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值