Codeforces Round #395 (Div. 2) 解题报告

年后恢复训练参加的第一场,表现的不是很好,必须要赶紧振作起来了啊。

A、B题不再赘述。

C题

不要被树的形式吓到,实际上不需要换根DFS,只需要看两顶点颜色不同的线段即可。

 1 #include<stdio.h>
 2 #include<bits/stdc++.h>
 3 #include <iostream>
 4 using namespace std;
 5 typedef long long ll;
 6 typedef unsigned long long ull;
 7 int k=0,n,i;
 8 int color[100005],st[100005],en[100005],ge[100005];
 9 int main()
10 {
11     scanf("%d",&n);
12     for(i=0;i<n-1;i++)
13     {
14         scanf("%d %d",&st[i],&en[i]);
15     }
16     for(i=1;i<=n;i++)
17     {
18         scanf("%d",&color[i]);
19     }
20     for(i=0;i<n-1;i++)
21     {
22         if(color[st[i]]!=color[en[i]])
23         {
24             k++;
25             ge[st[i]]++;
26             ge[en[i]]++;
27         }
28     }
29     for(i=1;i<=n;i++)
30     {
31         if(ge[i]==k)
32         {
33             printf("YES\n");
34             printf("%d\n",i);
35             return 0;
36         }
37     }
38     printf("NO\n");
39     return 0;
40 }

 

 

D题

构造法,按矩形左下角横纵坐标奇偶性填颜色即可。(易证这样即可)

 1 #include<stdio.h>
 2 #include<bits/stdc++.h>
 3 #include <iostream>
 4 using namespace std;
 5 typedef long long ll;
 6 typedef unsigned long long ull;
 7 int n;
 8 int lx[500005],ly[500005];
 9 int main()
10 {
11     int i,tem1,tem2;
12     scanf("%d",&n);
13     for(i=0;i<n;i++)
14     {
15         scanf("%d %d %d %d",&lx[i],&ly[i],&tem1,&tem2);
16         lx[i]=abs(lx[i]);
17         ly[i]=abs(ly[i]);
18     }
19     printf("YES\n");
20     for(i=0;i<n;i++)
21     {
22         if(lx[i]%2==0&&ly[i]%2==0)
23             printf("1\n");
24         else if(lx[i]%2==1&&ly[i]%2==0)
25             printf("2\n");
26         else if(lx[i]%2==0&&ly[i]%2==1)
27             printf("3\n");
28         else
29             printf("4\n");
30     }
31 }

 

 

E题

“ 大概就是,考虑任取Ai和Aj,作差Ai-Aj,这个差的值只和AiAj在等差数列中的位置差有关(d*(pi-pj)%m)。如果位置差pi-pj不同,d*(pi-pj)一定也不同(这里用到了n*2<m)。由于d*1和d*-1会出现n-1次,d*2和d*-2会出现n-2次……,所以可以用差值出现的次数来确定d,确定d之后随便搞了”

 1 #include<stdio.h>
 2 #include<bits/stdc++.h>
 3 #include <iostream>
 4 using namespace std;
 5 typedef long long ll;
 6 typedef unsigned long long ull;
 7 int n,m;
 8 int a[100005],b[100005];
 9 int he_1=0,he_2=0;
10 int d,x,he,oh;
11 int fastmi(int n,int m,int k)
12 {
13     int re=1;
14     while(m)
15     {
16         if(m&1)
17         {
18             re=1LL*re*n%k;
19         }
20         m>>=1;
21         n=1LL*n*n%k;
22     }
23     return re;
24 }
25 int main()
26 {
27     scanf("%d %d",&m,&n);
28     int i;
29     for(i=0;i<n;i++)
30     {
31         scanf("%d",&a[i]);
32         he_1=(he_1+a[i])%m;
33         he_2=(he_2+1LL*a[i]*a[i])%m;
34     }
35     if(n==1)
36     {
37         printf("%d 0\n",a[0]);
38         return 0;
39     }
40     if(n==m)
41     {
42         printf("0 1\n");
43         return 0;
44     }
45     sort(a,a+n);
46     oh=fastmi(n,m-2,m);
47 //    printf("he1= %d\n",he_1);
48 //    printf("he2= %d\n",he_2);
49     for(i=1;i<n;i++)
50     {
51 //        printf("aishi %d\n",a[i]);
52         d=(a[i]-a[0]+m)%m;
53 ////        printf("%d\n",fastmi(n,m-2,m));
54 //        x=1LL*(he_1-(1LL*n*(n-1)/2)%m*d%m+m)%m*oh%m;//算得此时首项
55 ////        printf("x=%d\n",x);
56 //        he=(n*x%m*x%m+1LL*n*(n-1)%m*x%m*d%m+1LL*n*(n-1)*(2*n-1)/6*d%m*d%m)%m;
57 ////        printf("he=%d\n",he);
58 
59         x=1LL*(he_1-1LL*n*(n-1)/2%m*d%m+m)*oh%m;
60         int tmp=1LL*n*x%m*x%m;
61         tmp=(tmp+1LL*n*(n-1)%m*d%m*x%m)%m;
62         tmp=(tmp+1LL*n*(n-1)*(2*n-1)/6%m*d%m*d%m)%m;
63 
64         if(tmp==he_2)
65         {
66             b[0]=x;
67             for(int j=1;j<n;j++)
68             {
69                 b[j]=(b[j-1]+d)%m;
70             }
71             sort(b,b+n);
72             int s;
73             for(s=0;s<n;s++)
74             {
75                 if(b[s]!=a[s])
76                     break;
77             }
78 //            printf("s=%d\n",s);
79             if(s==n)
80             {
81                 printf("%d %d\n",x,d);
82                 return 0;
83             }
84         }
85     }
86     printf("-1\n");
87 
88 }

 

 

转载于:https://www.cnblogs.com/quintessence/p/6368873.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值