多项式各种操作

多项式各种操作

这里的操作还不是特别完备,可能以后会更新??gugugu

多项式求逆

给定一个多项式\(A(x)\),求多项式\(F(x)\)满足:
\[ F(x)A(x)\equiv 1\pmod{x^n} \]
当然如果是良心出题人会让你模\(998244353\)之类的模数。


首先要把\(n\)补成\(2\)的次幂,好理解也好写一些。

假设我们现在已经求出了\(F_0(x)\),满足:
\[ F_0(x)A(x)\equiv 1\pmod{ x^{n/2}} \]
现在要求\(F(x)\),满足:
\[ F(x)A(x)\equiv 1\pmod{x^n} \]
显然也满足:
\[ F(x)A(x)\equiv 1\pmod{x^{n/2}} \]
那么两式相减可得:
\[ F(x)-F_0(x)\equiv0\pmod{x^{n/2}} \]
两边平方:
\[ F^2(x)-2F(x)F_0(x)+F_0^2(x)\equiv0\pmod{x^{n}} \]
注意这里模数也平方了,因为左边\(<n/2\)的每一项都是\(0\),平方之后,对于第\(i\)项,\(i\in [n/2,n)\),可得:\(a_i=\sum_{j=0}^i a_ja_{i-j}\),注意这里\(j\)\(i-j\)必然有一个\(<n/2\),也就是说这一项也为\(0\),所以是正确的。

那么两边都乘上一个\(A(x)\)
\[ F(x)\equiv2F_0(x)-A(x)F_0^2(x)\pmod{x^n} \]
那么我们只要递归做就好了。

复杂度\(T(n)=T(n/2)+O(n\log n)\),所以\(T(n)=O(n\log n)\)常数可想而知

代码大概长这个样子:

void get_inv(int *r,int *t,int m) {
    if(m==1) return t[0]=qpow(r[0],mod-2),void();
    get_inv(r,t,(m+1)>>1);
    N=1,bit=0;while(N<(m<<1)) N<<=1,bit++;
    for(int i=0;i<N;i++) pos[i]=pos[i>>1]>>1|((i&1)<<(bit-1));
    for(int i=0;i<m;i++) tmp[i]=r[i];
    for(int i=m;i<N;i++) tmp[i]=0;
    ntt(tmp,1),ntt(t,1);
    for(int i=0;i<N;i++) t[i]=1ll*t[i]*(2%mod-1ll*tmp[i]*t[i]%mod+mod)%mod;
    ntt(t,-1);for(int i=m;i<N;i++) t[i]=0;
}

完整代码会贴在下面。

多项式求ln

给定一个多项式\(A(x)\),求\(\ln A(x)\),保证\([0]A(x)=1\)


多项式的对数...大概可以如下定义:
\[ \ln(1-F(x))=\sum_{n=1}^\infty -\frac{F^n(x)}{n} \]
其实就是把这玩意泰勒展开了一下。


那么计算其实很简单了,令:
\[ F(x)=\ln A(x) \]
两边对\(x\)求导:
\[ F'(x)=\frac{A'(x)}{A(x)} \]
然后注意到后面是可以算出来的,直接多项式求逆就好了。

然后两边积分:
\[ F(x)=\int \frac{A'(x)}{A(x)} {\rm{d}}x \]
注意到求导和积分都是可以\(O(n)\)算的,所以总复杂度\(O(n\log n)\)

牛顿迭代

给定一个函数\(G(x)\),求多项式\(F(x)\),使得\(G(F(x))=0\)


假定我们现在已经求出了\(F_0(x)\),满足:

\[ G(F_0(x))\equiv0\pmod{x^{n/2}} \]

考虑对\(G(F(x))\)\(F_0(x)\)的泰勒展开:
\[ G(F(x))\equiv\sum_{n=0}^\infty G^{(n)}(F_0(x))(F(x)-F_0(x))^n\pmod{x^n} \]
这里\(G^{(n)}\)表示\(n\)阶导,注意这里是对\(F(x)\)求导,也就是:
\[ \frac{{\rm{d}}^nG(F(x))}{{\rm{d}}F(x)^n} \]
注意到\(F(x)\)\(F_0(x)\)的前\(n/2\)项相同,那么可以发现:
\[ (F(x)-F_0(x))^2\equiv0\pmod{x^n} \]
所以后面的项都消掉了,剩下前两项:
\[ G(F(x))=G(F_0(x))+G'(F_0(x))(F(x)-F_0(x))=0 \]
然后可以把\(F(x)\)解出来:
\[ F(x)=F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))} \]
然后就做完了。

下面举两个栗子看看这玩意有啥用。

多项式求exp

给定一个多项式\(A(x)\),求\(\exp(A(x))\),保证\([0]A(x)=0\)


同样的,用麦克劳林级数定义如下:
\[ e^{A(x)}=\sum_{n=0}^\infty \frac{F^n(x)}{n!} \]


现在是要求\(F(x)\)满足:
\[ e^{A(x)}=F(x) \]
两边取\(\ln\)
\[ A(x)=\ln F(x)\\ \ln F(x)-A(x)=0 \]
构造函数\(G(x)\)如下:
\[ G(F(x))=\ln F(x)-A(x) \]
那么:
\[ G'(F(x))=\frac{1}{F(x)} \]
带入先前的牛顿迭代式子:
\[ F(x)=F_0(x)-(\ln F_0(x)-A(x))F_0(x)\\ =F_0(x)(1-\ln F_0(x)+A(x)) \]
带进去算就好了,复杂度\(O(n\log n)\),这里面还套了个多项式求逆,常数可想而知

多项式开根

给定一个多项式\(A(x)\),求\(F(x)\),满足\(F^2(x)\equiv A(x)\pmod{x^n}\)


同样构造函数\(G(x)\)
\[ G(F(x))=F^2(x)-A(x)=0 \]
那么带进去:
\[ \begin{align} F(x)&=F_0(x)-\frac{F_0^2(x)-A(x)}{2F_0(x)}=\frac{F_0^2(x)+A(x)}{2F_0(x)}\\ &=\frac{1}{2}(F_0(x)+\frac{A(x)}{F_0(x)}) \end{align} \]
复杂度同样\(O(n\log n)\)

多项式快速幂

给定一个多项式\(A(x)\),求\(F(x)\),满足\(F(x)\equiv A^k(x)\pmod{x^n}\)


两边取\(\ln\)
\[ \ln F(x)=k\ln A(x) \]
然后\(\exp\)回来:
\[ F(x)=\exp(k\ln A(x)) \]
复杂度\(O(n\log n)\)

这个也可以实现多项式开根,只是跑的慢一些而已。

模板

多项式\(\exp\):题目来自洛谷模板

#include<bits/stdc++.h>
using namespace std;
 
void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
 
void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}

const int maxn = 1e6+10;
const int mod = 998244353;

int s[maxn],pos[maxn],N,bit,n,s2[maxn];

int qpow(int a,int x) {
    int res=1;
    for(;x;x>>=1,a=1ll*a*a%mod) if(x&1) res=1ll*res*a%mod;
    return res;
}

void ntt(int *r,int op) {
    for(int i=0;i<N;i++) if(pos[i]>i) swap(r[i],r[pos[i]]);
    for(int i=1;i<N;i<<=1) {
        int wn=qpow(op==1?3:qpow(3,mod-2),(mod-1)/(i<<1));
        for(int j=0;j<N;j+=(i<<1)) 
            for(int k=0,w=1;k<i;k++,w=1ll*w*wn%mod) {
                int x=r[j+k],y=1ll*w*r[i+j+k]%mod;
                r[j+k]=(x+y)%mod,r[i+j+k]=(x-y+mod)%mod;
            }
    }
    if(op==-1) {
        int inv=qpow(N,mod-2);
        for(int i=0;i<N;i++) r[i]=1ll*r[i]*inv%mod;
    }
}

int tmp[maxn],tmp2[maxn],tmp3[maxn];

void get_inv(int *r,int *t,int m) {
    if(m==1) return t[0]=qpow(r[0],mod-2),void();
    get_inv(r,t,(m+1)>>1);
    N=1,bit=0;while(N<(m<<1)) N<<=1,bit++;
    for(int i=0;i<N;i++) pos[i]=pos[i>>1]>>1|((i&1)<<(bit-1));
    for(int i=0;i<m;i++) tmp[i]=r[i];
    for(int i=m;i<N;i++) tmp[i]=0;
    ntt(tmp,1),ntt(t,1);
    for(int i=0;i<N;i++) t[i]=1ll*t[i]*(2%mod-1ll*tmp[i]*t[i]%mod+mod)%mod;
    ntt(t,-1);for(int i=m;i<N;i++) t[i]=0;
}

void integral(int *r,int *t,int m) {
    N=1;while(N<(m<<1)) N<<=1;t[0]=0;
    for(int i=0;i<m;i++) t[i+1]=1ll*r[i]*qpow(i+1,mod-2)%mod;
    for(int i=m+1;i<N;i++) t[i]=0;
}

void derivative(int *r,int *t,int m) {
    N=1;while(N<(m<<1)) N<<=1;
    for(int i=1;i<m;i++) t[i-1]=1ll*r[i]*i%mod;
    for(int i=m-1;i<N;i++) t[i]=0;
}

void get_ln(int *r,int *t,int m) {
    derivative(r,tmp3,m);
    get_inv(r,tmp2,m);
    ntt(tmp2,1),ntt(tmp3,1);
    for(int i=0;i<N;i++) tmp2[i]=1ll*tmp2[i]*tmp3[i]%mod;
    ntt(tmp2,-1);integral(tmp2,t,m);
    for(int i=0;i<=m<<1;i++) tmp2[i]=0;
}

int t2[maxn];

void get_exp(int *r,int *t,int m) {
    if(m==1) return t[0]=1,void();
    get_exp(r,t,(m+1)>>1);  
    N=1,bit=0;while(N<(m<<1)) N<<=1,bit++;
    for(int i=m;i<N;i++) t[i]=0;
    get_ln(t,t2,m);
    for(int i=m;i<N;i++) t2[i]=0;
    for(int i=0;i<m;i++) t2[i]=(-t2[i]+r[i]+mod)%mod;
    t2[0]=(t2[0]+1)%mod;
    for(int i=0;i<N;i++) pos[i]=pos[i>>1]>>1|((i&1)<<(bit-1));
    ntt(t2,1),ntt(t,1);
    for(int i=0;i<N;i++) t[i]=1ll*t[i]*t2[i]%mod;
    ntt(t,-1);for(int i=m;i<N;i++) t[i]=0;
}

int main() {
    read(n);
    for(int i=0;i<n;i++) read(s[i]);
    get_exp(s,s2,n);
    for(int i=0;i<n;i++) printf("%d ",(s2[i]+mod)%mod);puts("");
    return 0;
}

多项式开根:题目来自洛谷模板

#include<bits/stdc++.h>
using namespace std;
 
void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
 
void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}

#define lf double
#define ll long long 

const int maxn = 6e5+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 998244353;
const int inv2 = 499122177;

int f[maxn],g[maxn],n,m,mxn,bit,N,w[maxn],rw[maxn],s[maxn],t[maxn],pos[maxn];

int qpow(int a,int x) {
    int res=1;
    for(;x;x>>=1,a=1ll*a*a%mod) if(x&1) res=1ll*res*a%mod;
    return res;
}

void prepare() {
    w[0]=1;w[1]=qpow(3,(mod-1)/mxn);
    for(int i=2;i<=mxn;i++) w[i]=1ll*w[i-1]*w[1]%mod;
    rw[0]=1,rw[1]=qpow(qpow(3,mod-2),(mod-1)/mxn);
    for(int i=2;i<=mxn;i++) rw[i]=1ll*rw[i-1]*rw[1]%mod;
}

void ntt(int *r,int op) {
    for(int i=1;i<N;i++) if(pos[i]>i) swap(r[i],r[pos[i]]);
    for(int i=1,d=mxn>>1;i<N;i<<=1,d>>=1) 
        for(int j=0;j<N;j+=i<<1)
            for(int k=0;k<i;k++) {
                int x=r[j+k],y=1ll*r[i+j+k]*(op==1?w:rw)[k*d]%mod;
                r[j+k]=(x+y)%mod,r[i+j+k]=(x-y+mod)%mod;
                }
    if(op==-1) {
        int inv=qpow(N,mod-2);
        for(int i=0;i<N;i++) r[i]=1ll*r[i]*inv%mod;
    }
}

int tmp1[maxn],tmp2[maxn],tmp3[maxn];

void get_pos(int len) {
    for(bit=0,N=1;N<len;N<<=1,bit++);
    for(int i=1;i<N;i++) pos[i]=pos[i>>1]>>1|((i&1)<<(bit-1));
}

void poly_inv(int *r,int *b,int len) {
    if(len==1) return b[0]=qpow(r[0],mod-2),void();
    poly_inv(r,b,len>>1);
    for(int i=0;i<len;i++) tmp1[i]=b[i],tmp2[i]=r[i];
    get_pos(len<<1);
    ntt(tmp1,1),ntt(tmp2,1);
    for(int i=0;i<N;i++) b[i]=((2ll*tmp1[i]%mod-1ll*tmp2[i]*tmp1[i]%mod*tmp1[i]%mod)%mod+mod)%mod;
    ntt(b,-1);
    for(int i=len;i<N;i++) b[i]=0;
    for(int i=0;i<len<<1;i++) tmp1[i]=tmp2[i]=0;
}

void poly_sqrt(int *r,int *b,int len) {
    if(len==1) return b[0]=r[0],void();
    poly_sqrt(r,b,len>>1);
    poly_inv(b,tmp3,len);
    get_pos(len<<1);
    for(int i=0;i<len;i++) tmp2[i]=r[i];
    ntt(tmp2,1),ntt(tmp3,1);
    for(int i=0;i<N;i++) tmp3[i]=1ll*tmp3[i]*tmp2[i]%mod;
    ntt(tmp3,-1);
    for(int i=0;i<len;i++) b[i]=1ll*inv2*(b[i]+tmp3[i])%mod;
    for(int i=0;i<len<<1;i++) tmp3[i]=tmp2[i]=0;
}

int main() {
    read(n);
    for(int i=0;i<n;i++) read(g[i]);
    for(mxn=1;mxn<=n<<1;mxn<<=1);
    prepare();
    poly_sqrt(g,t,mxn>>1);
    for(int i=0;i<n;i++) printf("%d ",t[i]);puts("");
    return 0;
}

代码是不同时期写的,可能相同的函数有点出入。

转载于:https://www.cnblogs.com/hbyer/p/10564073.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值