HDU 3061:Battle(最大权闭合图)

http://acm.hdu.edu.cn/showproblem.php?pid=3061

题意:中文题意。

思路:和上一题神似啊,比上一题还简单,重新看了遍论文让我对这个理解更加深了。

闭合图:如果某个点在图中的话,那么这个点的后继点全部都要在图中。

对应至题目,这里的必须攻占b以后才能攻占a,那么是a依赖于b。如果a在图中的话,那么b必定在图中(因为a是依赖于b的),所以是a连向b(而不是b连向a)。

这里总结一下做最大权闭合图的套路:把权值为正的点与超级源点S相连,容量为该权值,把权值为负的点与超级汇点T相连,容量为该权值的绝对值,然后点与点之间的连边是,如果a依赖于b,那么a连一条边向b,容量为INF。如果要求删除的点数的话,从S开始DFS,残余网络中的点即删除的点。因为删除的点的集合是从S出发可以达到的并且不能达到T的点集(即割分成的两个集(S集和T集)的S集)。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <queue>
 4 #include <algorithm>
 5 using namespace std;
 6 #define N 510
 7 #define INF 0x3f3f3f3f
 8 typedef long long LL;
 9 struct Edge {
10     int v, nxt, cap;
11 } edge[500010];
12 int head[N], cur[N], dis[N], pre[N], gap[N], vis[N], S, T, tot;
13 
14 void Add(int u, int v, int cap) {
15     edge[tot] = (Edge) {v, head[u], cap}; head[u] = tot++;
16     edge[tot] = (Edge) {u, head[v], 0}; head[v] = tot++;
17 }
18 
19 int BFS() {
20     memset(dis, INF, sizeof(dis));
21     memset(gap, 0, sizeof(gap));
22     queue<int> que; que.push(T);
23     dis[T] = 0; gap[0]++;
24     while(!que.empty()) {
25         int u = que.front(); que.pop();
26         for(int i = head[u]; ~i; i = edge[i].nxt) {
27             int v = edge[i].v;
28             if(dis[v] < INF) continue;
29             dis[v] = dis[u] + 1;
30             gap[dis[v]]++;
31             que.push(v);
32         }
33     }
34 }
35 
36 LL ISAP(int n) {
37     BFS();
38     memcpy(cur, head, sizeof(cur));
39     int u = pre[S] = S, i, flow, index; LL ans = 0;
40     while(dis[S] < n) {
41         if(u == T) {
42             flow = INF;
43             for(i = S; i != T; i = edge[cur[i]].v)
44                 if(flow > edge[cur[i]].cap) flow = edge[cur[i]].cap, index = i;
45             for(i = S; i != T; i = edge[cur[i]].v)
46                 edge[cur[i]].cap -= flow, edge[cur[i]^1].cap += flow;
47             u = index; ans += flow;
48         }
49         for(i = cur[u]; ~i; i = edge[i].nxt) if(edge[i].cap > 0 && dis[edge[i].v] + 1 == dis[u]) break;
50         if(~i) {
51             cur[u] = i; pre[edge[i].v] = u; u = edge[i].v;
52         } else {
53             int md = n + 1;
54             if(--gap[dis[u]] == 0) break;
55             for(i = head[u]; ~i; i = edge[i].nxt)
56                 if(edge[i].cap > 0 && dis[edge[i].v] < md) md = dis[edge[i].v], cur[u] = i;
57             gap[dis[u] = md + 1]++;
58             u = pre[u];
59         }
60     }
61     return ans;
62 }
63 
64 int main() {
65     int n, m;
66     while(~scanf("%d%d", &n, &m)) {
67         S = 0, T = n + 1;
68         LL sum = 0; int u, v; tot = 0;
69         memset(head, -1, sizeof(head));
70         memset(vis, 0, sizeof(vis));
71         for(int i = 1; i <= n; i++) {
72             int w; scanf("%d", &w);
73             if(w > 0) Add(S, i, w), sum += w;
74             else Add(i, T, -w);
75         }
76         for(int i = 1; i <= m; i++) {
77             int u, v;
78             scanf("%d%d", &u, &v);
79             Add(u, v, INF);
80         }
81         LL ans = ISAP(T + 1);
82         printf("%lld\n", sum - ans);
83     }
84     return 0;
85 }

 

转载于:https://www.cnblogs.com/fightfordream/p/6371987.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值