BZOJ4897 THUSC2016成绩单(区间dp)

  拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代价,特别地f[i][j][0][0]表示取完i~j区间的最小代价。转移时考虑j最后和哪一段一起拿走,有f[i][j][min(x,a[j])][max(y,a[j])]=min{f[i][d-1][x][y]+f[d][j-1][0][0]},这样就能处理拿走一段后区间的合并了。

  区间dp好难啊。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
#define N 55
int n,w,v,a[N],b[N],f[N][N][N][N];
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4897.in","r",stdin);
    freopen("bzoj4897.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),w=read(),v=read();
    for (int i=1;i<=n;i++) b[i]=a[i]=read();
    sort(b+1,b+n+1);int t=unique(b+1,b+n+1)-b-1;
    for (int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+t+1,a[i])-b;
    memset(f,42,sizeof(f));
    for (int i=1;i<=n+1;i++)
    {
        f[i][i-1][0][0]=0;
        for (int x=1;x<=t;x++)
            for (int y=x;y<=t;y++)
            f[i][i-1][x][y]=0;
    }
    for (int k=1;k<=n;k++)
        for (int i=1;i<=n-k+1;i++)
        {
            int j=i+k-1;
            for (int x=1;x<=t;x++)
                for (int y=x;y<=t;y++)
                    for (int d=i;d<=j;d++)
                    f[i][j][min(x,a[j])][max(y,a[j])]=min(f[i][j][min(x,a[j])][max(y,a[j])],f[i][d-1][x][y]+f[d][j-1][0][0]);
            for (int x=1;x<=t;x++)
                for (int y=x;y<=t;y++)
                f[i][j][0][0]=min(f[i][j][0][0],f[i][j][x][y]+w+v*(b[y]-b[x])*(b[y]-b[x]));
        }
    cout<<f[1][n][0][0];
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9781521.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值