一道笔试题,螺旋打印序列

题:输入一个数N,表示N*N的矩阵,矩阵的值为从1开始的自然数,且按行存储。要求按螺旋顺序,依次打印出矩阵中的值。

例如:N=4时, 矩阵为:

1  2  3  4

5  6  7  8

9  10 11 12

13 14 15 16,

打印的序列为: 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10。

初步思路如下:


//以大小固定的数组为例
#include 
using namespace std;

const int arr_sz = 6;
int array[arr_sz][arr_sz];

void init_array(int array[arr_sz][arr_sz])
{
    for(int i=0;i<< array[i][j];
            if(j==arr_sz-1)
                cout << endl;
            else
                cout << "\t";
        }
}

enum dir {lft, rt, dn, up};
void pt_seq2(int array[][arr_sz], int total)
{
    int i,j;
    i=j=0;
    dir direc = rt;
    int cnt = 0;
    /*
    right->down; down->lft; lft->up; up->rt;
    */
    while(cnt < total)
    {
        cout << array[i][j] << " ";
        array[i][j] = 0;
        cnt++;
        if(direc == rt)  //向右
        {
            if(j+1 < arr_sz && array[i][j+1] != 0)
                j++;
            else
            {
                direc = dn;
                i++;
            }
        }
        else if(direc == dn)   //向下
        {
            if(i+1 < arr_sz && array[i+1][j] != 0)
                i++;
            else
            {
                direc = lft;
                j--;
            }
        }
        else if(direc == lft)
        {
            if(j-1 >=0 && array[i][j-1] != 0)
                j--;
            else
            {
                direc = up;
                i--;
            }
        }
        else if(direc == up)
        {
            if(i-1 && array[i-1][j] != 0)
                i--;
            else
            {
                direc = rt;
                j++;
            }
        }
    }
}
int main()
{
    init_array(array);
    pt(array);

    pt_seq2(array, arr_sz*arr_sz);
    return 0;
}

  

转载于:https://www.cnblogs.com/friedwm/archive/2012/11/02/2750767.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值