Codeforces Round #430 D. Vitya and Strange Lesson

Today at the lesson Vitya learned a very interesting function — mex. Mex of a sequence of numbers is the minimum non-negative number that is not present in the sequence as element. For example, mex([4, 33, 0, 1, 1, 5]) = 2 and mex([1, 2, 3]) = 0.

Vitya quickly understood all tasks of the teacher, but can you do the same?

You are given an array consisting of n non-negative integers, and m queries. Each query is characterized by one number x and consists of the following consecutive steps:

Perform the bitwise addition operation modulo 2 (xor) of each array element with the number x.
Find mex of the resulting array.

Note that after each query the array changes.
Input

First line contains two integer numbers n and m (1 ≤ n, m ≤ 3·105) — number of elements in array and number of queries.

Next line contains n integer numbers ai (0 ≤ ai ≤ 3·105) — elements of then array.

Each of next m lines contains query — one integer number x (0 ≤ x ≤ 3·105).
Output

For each query print the answer on a separate line.

题目大意:
定义mex数为数组中第一个没有出现的非负整数.有m个操作,每个操作有一个x,将数组中所有的元素都异或x,然后询问当前的mex
解题报告:
考场上搞了一个小时,原来看错题了,其实只是简单的Trie树基本操作,
mex数:如果左子树没满直接走左子树,不然就走右子树.
异或操作:如果x的该位为1,交换该节点的左右子树,打上标记即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=6e6+10,maxdep=21;
int gi(){
    int str=0;char ch=getchar();
    while(ch>'9' || ch<'0')ch=getchar();
    while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
    return str;
}
struct node{
    int l,r,s,rev;
}t[N];
int n,root=0,tot=0,w[30],m;
void insert(int &rt,int x,int d){
    if(!rt)rt=++tot;
    if(d==-1){
        t[rt].s=1;return ;
    }
    if(x&w[d])insert(t[rt].r,x,d-1);
    else insert(t[rt].l,x,d-1);
    t[rt].s=t[t[rt].l].s&t[t[rt].r].s;
}
void pushdown(int rt,int d){
    if(!t[rt].rev)return ;
    int k=t[rt].rev;
    t[t[rt].l].rev^=k;t[t[rt].r].rev^=k;
    if(d>=1 && (k&w[d-1])){
        swap(t[t[rt].l].l,t[t[rt].l].r);swap(t[t[rt].r].l,t[t[rt].r].r);
    }
    t[rt].rev=0;
}
int query(int rt,int d){
    if(d==-1)return 0;
    pushdown(rt,d);
    if(!t[t[rt].l].s)return query(t[rt].l,d-1);
    return query(t[rt].r,d-1)+w[d];
}
void work()
{
    int x;
    n=gi();m=gi();
    w[0]=1;for(int i=1;i<=maxdep;i++)w[i]=w[i-1]<<1;
    for(int i=1;i<=n;i++){
        x=gi();insert(root,x,maxdep);
    }
    while(m--){
        scanf("%d",&x);
        t[root].rev^=x;
        printf("%d\n",query(root,maxdep));
    }
}

int main()
{
    work();
    return 0;
}

转载于:https://www.cnblogs.com/Yuzao/p/7455071.html

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值