常用的函数:
tf.argmax(input, axis=None, name=None, dimension=None)
- input:输入Tensor
- axis:0表示按列,1表示按行
- name:名称
- 返回的为索引
1 import tensorflow as tf 2 import numpy as np 3 4 A , B = [[1, 3, 4, 5, 6]],[[1, 3, 4], [2, 4, 1]] 5 with tf.Session() as sess: 6 print(sess.run(tf.argmax(A, 1))) 7 print(sess.run(tf.argmax(B, 1)))
结果:
-
[4]
[2 1]
tf.case(pred_fn_pairs, default=None, exclusive=False, strict=False, name='case')
- pred_fn_pairs参数是大小为N的字典或pairs的列表-- 由boolean标量和可调用函数返回张量列表
- exclusive==True,则计算所有的谓词,如果多个谓词计算为True,则引发异常。
- default: 默认返回tensors列表
- strict: boolean打开或关闭‘strict‘ 模式
tf.cast(data,tf.float32)
- 数据类型转化(data转化为float32类型)
tf.equal(A, B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的
代码:
1 import tensorflow as tf 2 import numpy as np 3 4 A , B = [[1, 3, 4, 5, 6]],[[1, 3, 4, 3, 2]] 5 with tf.Session() as sess: 6 print(sess.run(tf.equal(A, B)))
结果:[[ True True True False False]]