/*
*代码亲自测试
*/
public class BubbleSort {
//冒泡排序:简单算法
public int[] sort1(int[] arr)
{
int temp = 0;
for(int i = 0; i < arr.length; i++)
{
for(int j = 0; j < arr.length-i-1; j++)
{
if(arr[j]>arr[j+1] )
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
return arr;
}
//冒泡排序优化1:假设我们现在排序arr[]={1,2,3,4,5,6,7,8,10,9}这组数据,
//按照上面的排序方式,第一趟排序后将10和9交换已经有序,接下来的8趟排序就是多余的,什么也没做。
//所以我们可以在交换的地方加一个标记,如果那一趟排序没有交换元素,说明这组数据已经有序,不用再继续下去。
public int[] sort2(int[] arr)
{
int temp = 0;
int flag = 0;
for(int i = 0; i < arr.length; i++)
{
flag = 0;
for(int j = 0; j< arr.length-i-1;j++)
{
if(arr[j] > arr[j+1])
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
flag = 1;
}
}
if(flag == 0)
{
return arr;
}
}
return arr;
}
//冒泡排序优化2:优化一仅仅适用于连片有序而整体无序的数据(例如:1, 2,3 ,4 ,7,6,5)。
//但是对于前面大部分是无序而后边小半部分有序的数据(1,2,5,7,4,3,6,8,9,10)排序效率也不可观,对于种类型数据,
//我们可以继续优化。既我们可以记下最后一次交换的位置,后边没有交换,必然是有序的,然后下一次排序从第一个比较到上次记录的位置结束即可。
public int[] sort3(int[] arr)
{
int temp = 0;
int flag = 0;
int k = arr.length-1;
int pos = 0;
for(int i = 0; i< arr.length;i++)
{
flag = 0;
for(int j = 0; j < k; j++)
{
if(arr[j] > arr[j+1])
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j] = temp;
flag =1;
pos = j;
}
}
if(flag == 0)
{
return arr;
}
k = pos;
}
return arr;
}
//冒泡排序优化3:一次排序可以确定两个值,正向扫描找到最大值交换到最后,反向扫描找到最小值交换到最前面。例如:排序数据1,2,3,4,5,6,0
public int[] sort4(int[] arr)
{
int pos =0;//存储最后一个交换位置
int flag = 0; //存储是否交换过
int temp = 0;//临时变量
int n=0;
int k = arr.length -1;
for(int i = 0; i < arr.length; i++)
{
flag = 0;
for(int j = n; j < k; j++)
{
if(arr[j] > arr[j+1])
{
temp= arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
pos = j;//获取最后交换位置
flag = 1;
}
}
if(flag == 0)
{
return arr;
}
k = pos;//下一次比较到记录位置即可
for(int j = k; j>n;j--)
{
if(arr[j] < arr[j-1])
{
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
flag = 1;
}
}
n++;
if(flag == 0)
{
return arr;
}
}
return arr;
}
}