洛谷P1072 Hankson 的趣味题

题目描述

Hanks 博士是 BT(Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

今天在课堂上,老师讲解了如何求两个正整数c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:

1. x 和 a0 的最大公约数是 a1

2. x 和 b0 的最小公倍数是b1

Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

输入输出格式

输入格式:

 

第一行为一个正整数 n,表示有 n 组输入数据。接下来的n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被b0整除。

 

输出格式:

 

共 n行。每组输入数据的输出结果占一行,为一个整数。

对于每组数据:若不存在这样的 x,请输出 0;

若存在这样的x,请输出满足条件的x 的个数;

 

输入输出样例

输入样例#1:  复制
2 
41 1 96 288 
95 1 37 1776 
输出样例#1:  复制
6 
2

说明

【说明】

第一组输入数据,x可以是9,18,36,72,144,288,共有6 个。

第二组输入数据,x 可以是48,1776,共有 2 个。

【数据范围】

对于 50%的数据,保证有 1a0,a1,b0,b110000 且n100。

对于 100%的数据,保证有 1a0,a1,b0,b12,000,000,000 且 n2000。

NOIP 2009 提高组 第二题

转载于:https://www.cnblogs.com/bryce02/p/9886117.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值