【转】高斯投影及其中央子午线的判断

高斯-克吕格投影是一种等角横切椭圆柱投影,常用于地图制作。投影特点包括中央子午线无变形、无角度变形。在RTK测量中,正确判断中央子午线至关重要,可通过查看当地经度、引用国家控制点或城市坐标系来确定。例如,经度除以3能整除则可能为中央子午线。
摘要由CSDN通过智能技术生成

一、高斯-克吕格投影

1、高斯-克吕格简介

高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学 家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投 影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正 形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的 投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

 2、高斯-克吕格特性

(1)等角投影——投影前后的角度相等,但长度和面积有变形;
(2)等距投影——投影前后的长度相等,但角度和面积有变形;
(3)等积投影——投影前后的面积相等,但角度和长度有变形。

3、投影的基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值